Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:42:13.823Z Has data issue: false hasContentIssue false

LMTO/CVM and LAPW/CVM Calculations of the Nial-Niti Pseudobinary Phase Diagram

Published online by Cambridge University Press:  26 February 2011

Benjamin P. Burton
Affiliation:
Materials Science and Engineering Laboratory NIST, Gaithersburg, MD 20899, USA
Jean E. Osburn
Affiliation:
Complex Systems Theory Branch, US Naval Research Lab., Washington DC 20375–5000, USA
Alain Pasturel
Affiliation:
Laboratoire de Thermodynamique et Physico-Chimie Metallurgiques, E.N.S.E.E.G. B. P. 75– 38402, St-Martin-D'Heres-Cedex, France
Get access

Abstract

Linear Muffin Tin Orbital and Linearly Augmented Plane Wave calculations of equations of state were performed for observed and hypothetical ordered structures in the NiAl-NiTi system. Total energies were parameterized in both the Connolly-Williams and ∈-G approximations, and the resulting parameters were used to calculate theoretical phase diagrams by the cluster variation method. Third nearest neighbor Al-Ti pairwise interactions are predicted to be strongly repulsive, and to be a major cause of observed B2+L21 two phase fields.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. The real system is “pseudobinary,” i.e. atomic fraction of Ni ≈ 1/2. Our calculations are “quasibinary,” i.e. atomic fraction of Ni is exactly 1/2.Google Scholar
2. Taylor, A. and Floyd, R.W., J. Inst. Metals, 81, 25 (1953).Google Scholar
3. Boettinger, W.J., Bendersky, L.A., Biancaniello, F.S., and Cahn, J.W., Materials Science and Engineering, 98 273- (1988).CrossRefGoogle Scholar
4. Tso, N.C. and Sanchez, J.M. MRS Symposium Series V133, 63- (1989).CrossRefGoogle Scholar
5. Polvani, R.S., Tzeng, Wen-Shian, and Strutt, P.R., Met. Trans. 7A, 33- (1976).CrossRefGoogle Scholar
6. Jia, C.C., Ishida, K. and Nishizawa, T. CALPHAD XIX 82 (1990).Google Scholar
7. In “QDTA” experiments samples are: 1) melted in a DTA aparatus; 2) cooled to the liquidus; 3) Quenched and analysed for the compositions of coexisting solid and liquid phases.Google Scholar
7a. e.g. Durand-Charre, H. Mater, J.. Sci. 25, 168-(1990);Google Scholar
7b. unpublished NiAl-NiTi data in Figure 1.Google Scholar
8. Field, R.D. and Lahrman, D.F., Scripta. Met. 23, 1469- (1989)CrossRefGoogle Scholar
9. Ferreria, L.G., Mbaye, A.A., and Zunger, A. Phys. Rev. B35, #12, 6475- (1987)CrossRefGoogle Scholar
10. Skriver, H. L. “The LMTO Method; Muffin-Tin Orbitals and Electronic Structure” Springer-Verlag (1984).Google Scholar
11. Andersen, O.K. Phys. Rev. B12, 3060- (1975).CrossRefGoogle Scholar
12. Von Barth, U. and Hedin, L., J. Phys. C. 5, 1629- (1972).Google Scholar
13. Van Schilfgaard, M., Paxton, A.T., Methfenel, M., Jepsen, O. and Andersen, O.K., private communication (A.P.).Google Scholar
14. Moruzzi, V.L., Janak, J.F., and Williams, A.R., Calculated Electronic Properties of Metals, Pergamon, NY, (1978).Google Scholar
15. Wei, S.H. and Krakauer, H., Phys. Rev. Left. 55, 1200- (1985).CrossRefGoogle Scholar
16. Hedin, L. and Lundqvist, B.I., J. Phys. C4, 2064- (1971)Google Scholar
17. Hoenberg, p. and Kohn, W. Phys. Rev. 136 B864 (1964);CrossRefGoogle Scholar
17a. Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
18. Monkhorst, H.J. and Pack, J.D., Phys. Rev. B13, 5188- (1976).CrossRefGoogle Scholar
19. Dinsdale, A.T., NPL Report DMA(A) 195 Sept. (1989).Google Scholar
20. Kubaschewski, O., Trans. Faraday Soc. 54, 814- (1958)CrossRefGoogle Scholar
21. Connolly, J.W.D. and Williams, A.R. Phys. Rev. B27, 5169- (1983).Google Scholar