Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:32:56.087Z Has data issue: false hasContentIssue false

Lithium Dendrite Inhibition on Post-Charge Anode Surface: The Kinetics Role

Published online by Cambridge University Press:  10 August 2015

Asghar Aryanfar*
Affiliation:
Linde Center for Global Environmental Science,
Tao Cheng
Affiliation:
Materials and Process Simulation Center, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125.
Boris V. Merinov
Affiliation:
Materials and Process Simulation Center, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125.
William A. Goddard III
Affiliation:
Materials and Process Simulation Center, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125.
Agustin J Colussi
Affiliation:
Linde Center for Global Environmental Science,
Michael R. Hoffmann
Affiliation:
Linde Center for Global Environmental Science,
*
* Corresponding Author: [email protected], Tel: +1 (626) 395-8736, Fax: +1 (626) 395-8535
Get access

Abstract

We report experiments and molecular dynamics calculations on the kinetics of electrodeposited lithium dendrites relaxation as a function of temperature and time. We found that the experimental average length of dendrite population decays via stretched exponential functions of time toward limiting values that depend inversely on temperature. The experimental activation energy derived from initial rates as Ea∼ 6-7 kcal/mole, which is closely matched by MD calculations, based on the ReaxFF force field for metallic lithium. Simulations reveal that relaxation proceeds in several steps via increasingly larger activation barriers. Incomplete relaxation at lower temperatures is therefore interpreted a manifestation of cooperative atomic motions into discrete topologies that frustrate monotonic progress by ‘caging’.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armand, M. and Tarascon, J.M., Building better batteries. Nature, 2008. 451(7179): p. 652657.CrossRefGoogle ScholarPubMed
Aryanfar, A., et al. , Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Physical Chemistry Chemical Physics, 2014. 16(45): p. 2496524970.CrossRefGoogle ScholarPubMed
Aryanfar, A., et al. , Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. The Journal of Physical Chemistry Letters, 2014. 5: p. 17211726.CrossRefGoogle ScholarPubMed
Mayers, M.Z., Kaminski, J.W., and Miller, T.F. III, Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries. The Journal of Physical Chemistry C, 2012. 116(50): p. 2621426221.CrossRefGoogle Scholar
Brissot, C., et al. , In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. Journal of the Electrochemical Society, 1999. 146(12): p. 43934400.CrossRefGoogle Scholar
Orsini, F., , A.D.P., Beaudoin, B., Tarascon, J.M., Trentin, M., Langenhuisen, N., Beer, E.D., Notten, P., In Situ Scanning Electron Microscopy (SEM) observation of interfaces with plastic lithium batteries. Journal of power sources, 1998. 76: p. 1929.CrossRefGoogle Scholar
Monroe, C. and Newman, J., Dendrite growth in lithium/polymer systems - A propagation model for liquid electrolytes under galvanostatic conditions. Journal of the Electrochemical Society, 2003. 150(10): p. A1377A1384.CrossRefGoogle Scholar
Liu, X.H., et al. , Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Applied Physics Letters, 2011. 98(18).CrossRefGoogle Scholar
Monroe, C. and Newman, J., The effect of interfacial deformation on electrodeposition kinetics. Journal of the Electrochemical Society, 2004. 151(6): p. A880A886.CrossRefGoogle Scholar
Nishida, T., et al. , Optical observation of Li dendrite growth in ionic liquid. Electrochimica Acta, 2013.CrossRefGoogle Scholar
Howlett, P.C., MacFarlane, D.R., and Hollenkamp, A.F., A sealed optical cell for the study of lithium-electrode electrolyte interfaces. Journal of Power Sources, 2003. 114(2): p. 277284.CrossRefGoogle Scholar
Schweikert, N., et al. , Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ Li-7 nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2013. 228: p. 237243.CrossRefGoogle Scholar
Crowther, O. and West, A.C., Effect of electrolyte composition on lithium dendrite growth. Journal of the Electrochemical Society, 2008. 155(11): p. A806A811.CrossRefGoogle Scholar
Brissot, C., et al. , Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources, 1999. 81: p. 925929.CrossRefGoogle Scholar
Seong, I.W., et al. , The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. Journal of Power Sources, 2008. 178(2): p. 769773.CrossRefGoogle Scholar
Stone, G., et al. , Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries. Journal of The Electrochemical Society, 2012. 159(3): p. A222A227.CrossRefGoogle Scholar
Steiger, J., Kramer, D., and Mönig, R., Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution. Electrochimica Acta, 2014.CrossRefGoogle Scholar
Harry, K.J., et al. , Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat Mater, 2014. 13(1): p. 6973.CrossRefGoogle ScholarPubMed
Steiger, J., Kramer, D., and Monig, R., Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. Journal of Power Sources, 2014. 261: p. 112119.CrossRefGoogle Scholar
Chazalviel, J.N., Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposits. Physical Review A, 1990. 42(12): p. 73557367.CrossRefGoogle ScholarPubMed
Zhang, H.-W., et al. Understanding and Predicting Li Dendrite Formation in Li-Ion Batteries: Phase Field Model. in Meeting Abstracts. 2014. The Electrochemical Society.Google Scholar
Goodenough, J.B. and Kim, Y., Challenges for rechargeable batteries. Journal of Power Sources, 2011. 196(16): p. 66886694.CrossRefGoogle Scholar
Goodenough, J.B. and Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013. 135(4): p. 11671176.CrossRefGoogle ScholarPubMed
Park, H.E., Hong, C.H., and Yoon, W.Y., The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries. Journal of Power Sources, 2008. 178(2): p. 765768.CrossRefGoogle Scholar
Diggle, J., Despic, A., and Bockris, J.M., The mechanism of the dendritic electrocrystallization of zinc. Journal of The Electrochemical Society, 1969. 116(11): p. 15031514.CrossRefGoogle Scholar
Brissot, C., et al. , Concentration measurements in lithium/polymer-electrolyte/lithium cells during cycling. Journal of Power Sources, 2001. 94(2): p. 212218.CrossRefGoogle Scholar
Bard, A.J. and Faulkner, L.R., Electrochemical methods: fundamentals and applications. 1980. 2 New York: Wiley, 1980.Google Scholar
Akolkar, R., Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. Journal of Power Sources, 2014. 246: p. 8489.CrossRefGoogle Scholar
Bhattacharyya, R., et al. , In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Materials, 2010. 9(6): p. 504510.CrossRefGoogle ScholarPubMed
Harry, K.J., et al. , Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nature materials, 2014. 13(1): p. 6973.CrossRefGoogle ScholarPubMed
Aryanfar, A., et al. , Thermal relaxation of lithium dendrites. Physical Chemistry Chemical Physics, 2015. 17(12): p. 80008005.CrossRefGoogle ScholarPubMed
Aryanfar, A., Method and device for dendrite research and discovery in batteries. 2014, US Patent App. 14/201,979.Google Scholar
Chenoweth, K., van Duin, A.C., and Goddard, W.A., ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. The Journal of Physical Chemistry A, 2008. 112(5): p. 10401053.CrossRefGoogle ScholarPubMed
Van Duin, A.C.T., et al. , ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 2001. 105(41): p. 93969409.CrossRefGoogle Scholar
Martyna, G.J., Tobias, D.J., and Klein, M.L., Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 1994. 101(5): p. 41774189.CrossRefGoogle Scholar