Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T08:05:02.520Z Has data issue: false hasContentIssue false

Linear Scaling DFT Calculations with Numerical Atomic Orbitals

Published online by Cambridge University Press:  21 March 2011

P. Ordejón
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC Campus de la UAB, Bellaterra 08193, Barcelona, Spain
E. Artacho
Affiliation:
Departamento de Física de Materia Condensada, C-III, Universidad Autónoma de Madrid 28049 Madrid, Spain
R. Cachau
Affiliation:
Advanced Biomedical Computing Center, National Cancer Institute, SAIC, Frederick 21702, Maryland, USA
J. Gale
Affiliation:
Imperial College Exhibition Road, London SW7 2AY, United Kingdom
A. García
Affiliation:
Departamento de Física Aplicada II, Universidad del País Vasco Apartado 644, 48080 Bilbao, Spain
J. Junquera
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast Belfast BT7 1NN, Northern Ireland, United Kingdom
J. Kohanoff
Affiliation:
School of Mathematics and Physics, The Queen's University of Belfast Belfast BT7 1NN, Northern Ireland, United Kingdom
M. Machado
Affiliation:
Departamento de Física de Materiales, Universidad del País Vasco Apartado 1072, 20080 San Sebastián, Spain.
D. Sanchez-Portal
Affiliation:
Departamento de Física de Materiales, Universidad del País Vasco Apartado 1072, 20080 San Sebastián, Spain.
J. M. Soler
Affiliation:
Departamento de Física de Materia Condensada, C-III, Universidad Autónoma de Madrid 28049 Madrid, Spain
R. Weht
Affiliation:
Departamento de Física, CNEA Avda. General Paz y Constituyentes, 1650 San Martín, Argentina
Get access

Abstract

We have recently developed a method to perform Density Functional Theory calculations in systems with a very large number of atoms, which is based on the use of numerical atomic orbitals as basis sets. The method incorporates Order-N techniques both in the calculation of the Kohn-Sham hamiltonian matrix elements and in the solution of the wave functions, which make the CPU time and memory to scale linearly with the number of atoms, allowing calculations in very large system. In this work, we present results on several test systems to show that the approach and the basis sets used with our method are able to provide an accuracy similar to that of other standard DFT techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hohenberg, P. and Kohn, W., Phys. Rev. 135, 846 (1964)Google Scholar
2. Kohn, W. and Sham, L., Phys. Rev. 140, 1133 (1965)Google Scholar
3. Ordejón, P., Comp. Mater. Sci. 12, 157 (1998)Google Scholar
4. Goedecker, S., Rev. Mod. Phys. 71, 1085 (1999)Google Scholar
5. Kohn, W., Phys. Rev. Lett. 76, 3168 (1996)Google Scholar
6. Ordejón, P., Artacho, E. and Soler, J. M., Phys. Rev. B 53, R10441 (1996)Google Scholar
7. Sánchez-Portal, D., Ordejón, P., Artacho, E. and Soler, J. M., Int. J. Quantum Chem. 65, 453 (1997)Google Scholar
8. Artacho, E., Sánchez-Portal, D., Ordejón, P., García, A. and Soler, J. M., phys. stat. sol. (b) 215, 809 (1999)Google Scholar
9. Junquera, J., Paz, O., Sanchez-Portal, D., and Artacho, E., submitted to Phys. Rev. B., preprint available at xxx.lanl.gov: e-print cond-mat/0104170Google Scholar
10. Ordejón, P., phys. stat. sol. (b) 217, 335 (2000)Google Scholar
11. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982)Google Scholar
12. Louie, S. G., Froyen, S. and Cohen, M. L., Phys. Rev. B 26, 1738 (1982)Google Scholar
13. Sankey, O. and Niklewski, D., Phys. Rev. B 40, 3979 (1989)Google Scholar
14. King-Smith, R. D., and Vanderbilt, D., Phys. Rev. B 49, 5828 (1994)Google Scholar
15. Cohen, R. and Krakauer, H., Ferroelectrics 136, 65 (1992)Google Scholar
16. Perdew, J. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
17. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991)Google Scholar
18. Cohen, R. E., and Krakauer, H., Phys. Rev. B. 42, 6416 (1990).Google Scholar
19. Singh, D. J., Planewaves, Pseudopotentials, and the LAPW Method, (Kluwer Academic, Boston, 1994)Google Scholar
20. Blaha, P., Schwarz, K., and Luitz, J., WIEN97, Vienna University of Technology, 1997. Improved and updated version of the original copyrighted WIEN code, published by Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S. B., Comput. Phys. Commun. 59, 399 (1990).Google Scholar
21. Harada, J., Pedersen, T. and Barnea, Z., Acta. Cryst. A 26, 336 (1970)Google Scholar
22. Ghosez, Ph., Thesis, PhD; Ghosez, Ph., Cockayne, E., Waghmare, U. V. and Rabe, K. M., Phys. Rev. B 60, 836 (1999)Google Scholar
23. King-Smith, R. D., and Vanderbilt, D., Phys. Rev. B 47, 1651 (1993); R. Resta, Rev. Mod. Phys. 66, 899 (1994)Google Scholar
24. Sanchez-Portal, D., Souza, I., and Martin, R. M., in Fundamental Physics of Ferroelectrics 2000: Aspen Center for Physics Winter Workshop, edited by Cohen, R.E. (AIP, Melville, New York, 2000), pp. 111120 Google Scholar
25. Ghosez, Ph., Gonze, X., Lambin, Ph. and Michenaud, J.-P., Phys. Rev. B 51, 6765 (1995)Google Scholar
26. Zhong, Z., King-Smith, R. D. and Vanderbilt, D., Phys. Rev. Lett 72, 3618 (1994)Google Scholar
27. Becke, A. D., J. Chem. Phys. 98, 5648 (1994).Google Scholar
28. AM1, PM3 referenceGoogle Scholar
29. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett 77, 3867 (1996)Google Scholar
30. Silva, A. M., Lee, A. Y., Gulnik, S. V., Majer, P., Collins, J., Bhat, T. N., Collins, P. J., R.E.Cachau, Leuker, K. E., Gluzman, I. Y., Francis, S. E., Oksman, A., Goldberg, D. E. and Erickson, J.W., Proc. Nat. Acad. Sciences USA 93, 10034 (1996)Google Scholar
31. Cachau, R.E., Journal of Molecular Biology 255(2), 343 (1996)Google Scholar
32. Machado, M., Ordejón, P., Sánchez-Portal, D., Artacho, E. and Soler, J. M., xxx.lanl.gov e-print physics/9908022.Google Scholar
33. Sponer, J., Leszczynski, J. and Hobza, P., J. Phys. Chem. 100, 1965 (1996)Google Scholar