Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:04:47.308Z Has data issue: false hasContentIssue false

Linear Polarization Rotation Study of the Microwave-Induced Magnetoresistance Oscillations in the GaAs/AlGaAs System

Published online by Cambridge University Press:  19 November 2013

A. N. Ramanayaka
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 U.S.A.
Tianyu Ye
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 U.S.A.
H-C. Liu
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 U.S.A.
R. G. Mani
Affiliation:
Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 U.S.A.
W. Wegscheider
Affiliation:
Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich, Switzerland.
Get access

Abstract

Microwave-induced zero-resistance states appear when the associated B-1-periodic magnetoresistance oscillations grow in amplitude and become comparable to the dark resistance of the two-dimensional electron system (2DES). Existing theories have made differing predictions regarding the influence of the microwave polarization in this phenomenon. We have investigated the effect of rotating, in-situ, the polarization of linearly polarized microwaves relative to long-axis of Hall bars. The results indicate that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwave electric field and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance Rxx vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. Interestingly, the phase shift θ0 for maximal oscillatory Rxx response under photoexcitation is a strong function of the magnetic field, the extremum in question, and the magnetic field orientation.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mani, R. G., Smet, J. H., von Klitzing, K., Narayanamurti, V., Johnson, W. B., and Umansky, V., Nature (London) 420, 646 (2002); Phys. Rev. Lett. 92, 146801(2004); Phys. Rev. B 69, 193304 (2004); ibid. 69, 161306 (2004); ibid. 70, 155310 (2004).CrossRefGoogle Scholar
Zudov, M. A., Du, R. R., Pfeiffer, L. N., and West, K. W., Phys. Rev. Lett. 90, 046807 (2003).CrossRefGoogle Scholar
Mani, R. G., Physica E (Amsterdam) 22, 1 (2004); ibid. 25, 189(2004); Appl. Phys. Lett. 85, 4962 (2004).CrossRefGoogle Scholar
Studenikin, S. A., Potemski, M., Coleridge, P. T., Sachrajda, A. S., and Wasilewski, Z. R., Sol. St. Comm. 129, 341 (2004); Studenikin, S. et al. ., Phys. Rev. B 71, 245313(2005).Google Scholar
Kovalev, A. E., Zvyagin, S. A., Bowers, C. R., Reno, J. L., Simmons, J. A., Sol. St. Comm. 130, 379 (2004).CrossRefGoogle Scholar
Willett, R. L., Pfeiffer, L. N. and West, K. W., Phys. Rev. Lett. 93, 026804 (2004).CrossRefGoogle Scholar
Simovic, B., Ellenberger, C., Ensslin, K., and Wegscheider, W., Phys. Rev. B 71, 233303 (2005).CrossRefGoogle Scholar
Smet, J. H., Gorshunov, B., Jiang, C., Pfeiffer, L., West, K., Umansky, V., Dressel, M., Meisels, R., Kuchar, F., and von Klitzing, K., Phys. Rev. Lett. 95, 116804 (2005).Google Scholar
Stone, K., Yang, C. L., Yuan, Z. Q., Du, R. R., Pfeiffer, L. N. and West, K. W., Phys. Rev. B 76, 153306 (2007).CrossRefGoogle Scholar
Konstantinov, D. and Kono, K., Phys. Rev. Lett. 103, 266808 (2009).CrossRefGoogle Scholar
Dai, Y. H., Du, R. R., Pfeiffer, L. N., and West, K. W., Phys. Rev. Lett. 105, 246802 (2010).Google Scholar
Mani, R. G., Gerl, C., Schmult, S., Wegscheider, W., and Umansky, V., Phys. Rev. B. 81, 125320 (2010); Mani, R. G., Johnson, W. B., Umansky, V., Narayanamurti, V., and Ploog, K., Phys. Rev. B 79, 205320(2009).Google Scholar
Ramanayaka, A. N., Mani, R. G., and Wegscheider, W., Phys. Rev. B 83, 165303 (2011).Google Scholar
Mani, R. G., Ramanayaka, A. N., and Wegscheider, W., Phys. Rev. B 84, 085308 (2011); Ramanayaka, A. N., Mani, R. G., Inarrea, J., and Wegscheider, W., Phys. Rev. B. 85, 205315(2012).CrossRefGoogle Scholar
Durst, A. C., Sachdev, S., Read, N., and Girvin, S. M., Phys. Rev. Lett. 91, 086803 (2003).CrossRefGoogle Scholar
Ryzhii, V. and Suris, R., J. Phys.: Cond. Matt. 15, 6855 (2003).Google Scholar
Koulakov, A. A. and Raikh, M. E., Phys. Rev. B 68, 115324 (2003).Google Scholar
Lei, X. L. and Liu, S. Y., Phys. Rev. Lett. 91, 226805 (2003).CrossRefGoogle Scholar
Dmitriev, I. A., Vavilov, M. G., Aleiner, I. L., Mirlin, A. D., and Polyakov, D. G., Phys. Rev. B 71, 115316 (2005).CrossRefGoogle Scholar
Inarrea, J. and Platero, G., Phys. Rev. Lett. 94, 016806 (2005).CrossRefGoogle Scholar
Inarrea, J. and Platero, G., Phys. Rev. B 76, 073311 (2007).CrossRefGoogle Scholar
Inarrea, J. and Platero, G., J. Phys. Conf. Ser. 210, 012042 (2010).CrossRefGoogle Scholar
Chepelianskii, A. D., Pikovsky, A. S., and Shepelyansky, D. L., Eur. Phys. J. B 60, 225 (2007).Google Scholar
Finkler, I. G. and Halperin, B. I., Phys. Rev. B 79, 085315 (2009).CrossRefGoogle Scholar
Dmitriev, I. A., Khodas, M., Mirlin, A. D., Polyakov, D. G., and Vavilov, M. G., Phys. Rev. B 80, 165327 (2009).CrossRefGoogle Scholar
Hagenmuller, D., de Librato, S., and Ciuti, C., Phys. Rev. B 81, 235303 (2010).CrossRefGoogle Scholar
Lindner, N. H., Refael, G., and Galitski, V., Nat. Phys. 7, 490 (2011).CrossRefGoogle Scholar
Gu, Z., Fertig, H. A., Arovas, D. P., and Auerbach, A., arXiv:1106.0302v1.Google Scholar