Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:21:25.207Z Has data issue: false hasContentIssue false

Limits and Properties of Size Quantization Effects in InAs Self Assembled Quantum Dots

Published online by Cambridge University Press:  15 February 2011

K. H. Schmidt
Affiliation:
Werkstoffe der Elektrotechnik, Ruhr-Universität Bochum, D-44780 Bochum, email: [email protected]
G. Medeiros-Ribeiro
Affiliation:
Hewlett Packard Co., 3500 Deer Creek Rd., Bldg. 26, Palo Alto, CA 94304–1392
M. Cheng
Affiliation:
M/A-COM, Microelectronics Division, 100 Chelmsford, St. Lowell, MA 01853–3294
P. M. Petroff
Affiliation:
QUEST and Materials Department, University of California, Santa Barbara, CA 93106
Get access

Abstract

In this paper we report on the limits and properties of size quantization effects in InAs self assembled quantum dots (QDs). Size, density and character of the InAs islands are investigated by transmission electron microscopy. The electronic and optical properties of the islands in the coherent and dislocated growth regime are studied using capacitance, photoluminescence, photovoltage and photocurrent spectroscopy. In the data measured with the different techniques, the change in dot size and density as well as the transition from coherent to dislocated island growth is clearly observable. An increasing QD size causes a red shift in the energetic position of the QD features while the density of the islands is reflected in the intensity of the QD signal. The decrease in intensity at high InAs coverage is attributed to dislocated island formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Am. Chem. Soc. 115, 8706 (1993)Google Scholar
2Solomon, G.S., Trerza, J.A., Marshall, A.F., and Harris, J.S. Jr., Phys. Rev. Lett. 76, 952 (1996)Google Scholar
3Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N.P., Phys. Rev. Lett. 75, 2542 (1995)Google Scholar
4Sopanen, M., Lipsanen, H. and Ahopelto, J., Appl. Phys. Lett. 66, 2364 (1995)Google Scholar
5Wojs, A., Hawrylak, P., Fafard, S., and Jacak, L., Phys. Rev. B 54, 5604 (1996)Google Scholar
6Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 52, 11969 (1995)Google Scholar
7Marzin, J-Y., Gerard, J.M., Izrael, A., Barrier, D., and Bastard, G., Phys. Rev. Lett. 73, 716 (1994)Google Scholar
8Drexler, H., Leonard, D., Hansen, W., Kotthaus, J.P., and Petroff, P.M., Phys. Rev. Lett. 73, 2252 (1994)Google Scholar
9Fafard, S., Leon, R., Leonard, D., Merz, J.L., and Petroff, P.M., Supertatt. Microstruct. 16, 303 (1994)Google Scholar
10Yokoyama, N., Muto, S., Imamura, K., Takatsu, M., Mori, T., Sugiyama, Y., Sakuma, Y., Nakao, H., and Adachihara, T., Solid State Electron. 40, 505 (1996)Google Scholar
11Shoji, H., Mukai, K., Ohtsuka, N., Sugawara, M., Uchida, T., and Ishikawa, H., IEEE Phot. Techn. Lett. 7, 1385 (1995)Google Scholar
12Yusa, G., Sakaki, H., Electronics Lett. 32, 491 (1996)Google Scholar
13Stranski, I.N. and Krastanow, Von L., Akad. Wiss. Lit. Mainz Math-Natur. Kl. lib 146, 797 (1939)Google Scholar
14Apetz, R., Vescan, L., Hartmann, A., Dieker, C., and Lüth, H., Appl. Phys. Lett. 66, 445 (1995)Google Scholar
15Carlsson, N., Seifert, W., Petterson, A., Castrillo, P., Pistol, M.-E., and Samuelson, L., Appl. Phys. Lett. 65, 3093 (1994)Google Scholar
16Bennett, B.R., Magno, R., and Shanabrook, B.V., Appl. Phys. Lett. 68, 505 (1996)Google Scholar
17Leonard, D., Pond, K., and Petroff, P.M., Phys. Rev. B 50, 11687 (1994)Google Scholar
18Leonard, D., Krishnamurthy, M., Fafard, S., Merz, J.L., and Petroff, P.M., J. Vac. Sci. Technol. B 12, 1063 (1994)Google Scholar
19Medeiros-Ribeiro, G., Leonard, D., and Petroff, P.M., Appl. Phys. Lett. 66, 1767 (1995)Google Scholar