Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:21:36.351Z Has data issue: false hasContentIssue false

Limiting and Enhancement Effects in Laser Chemical Vapor Deposition

Published online by Cambridge University Press:  21 February 2011

S. D. Allen
Affiliation:
Center for Laser Studies, University of Southern California, University Park, DRB 17, Los Angeles, California 90089–1112, USA
R. Y. Jan
Affiliation:
Center for Laser Studies, University of Southern California, University Park, DRB 17, Los Angeles, California 90089–1112, USA
S. M. Mazuk
Affiliation:
Center for Laser Studies, University of Southern California, University Park, DRB 17, Los Angeles, California 90089–1112, USA
K. J. Shin
Affiliation:
Center for Laser Studies, University of Southern California, University Park, DRB 17, Los Angeles, California 90089–1112, USA
S. D. Vernon
Affiliation:
Center for Laser Studies, University of Southern California, University Park, DRB 17, Los Angeles, California 90089–1112, USA
Get access

Abstract

Laser chemical vapor deposition (LCVD) is a modification of conventional CVD using a laser heat source. The film growth characteristics differ considerably from conventional CVD in several ways, however. The use of an optical heat source means that the optical properties of the film/substrate system must be considered, e.g., for metals deposited on absorbing substrates, the film thickness and diameter may “self-limit” in some cases because the deposited film reflects most of the laser energy. On the other hand, the small area heated in LCVD results in a different diffusion geometry and access to higher surface temperatures than are achievable when large areas are heated. For favorable reactant systems, these enhancement effects can yield fast deposition rates and line deposition scan speeds greater than 10 cm/sec. This paper will review results of pulsed and cw LCVD of predominantly metal films using visible and infrared lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Herman, I. P., Hyde, R. A., McWilliams, B. M., Weisberg, A. H. and Wood, L. L., Mat. Res. Soc. Symp. Proc. Vol. 17, 9 (1983).CrossRefGoogle Scholar
2. Ehrlich, D. J. and Tsao, J. Y., Mat. Res. Soc. Symp. Proc. Vol. 17, 3 (1983).CrossRefGoogle Scholar
3. Allen, S. D., Trigubo, A. B. and Jan, R. Y., Mat. Res. Soc. Symp. Proc. Vol. 17, 207 (1983) and Laser Focus, May 1983, p. 14.CrossRefGoogle Scholar
4. Krauter, W., Bäuerle, D., and Fimberger, F., Appl. Phys. A 31 13 (1983).CrossRefGoogle Scholar
5. Allen, S. D., J. Appl. Phys. 52, 6501 (1981).CrossRefGoogle Scholar
6. Edwards, R. H. and Allen, S. D., to be published.Google Scholar
7. Allen, S. D. and Jan, R. Y., Digest of the Conference on Lasers and Electro-optics (CLEO), Opt. Soc. Am. 1983, p. 26.Google Scholar
8. Allen, S. D., Trigubo, A. B. and Teisinger, M. L., J. Vac. Sci. Tech. 20, 469 (1982).CrossRefGoogle Scholar
9. Rytz-Froidevaux, Y., Salathé, R. P., Gilgen, H. H., and Weber, H. P., Appl. Phys. A 27, 133 (1982).CrossRefGoogle Scholar
10. Allen, S. D. and Trigubo, A. B., J. Appl. Phys. 54, 1641 (1983).CrossRefGoogle Scholar
11. Ehrlich, D. J. and Tsao, J. Y., J. Vac. Sci. Tech. B 1, 969 (1983).CrossRefGoogle Scholar
12. Heavens, O. S., Physics of Thin Films 2, 193 (1964).Google Scholar
13. Goldstone, J. and Allen, S. D., numerical integration calculations in progress.Google Scholar
14. Allen, S. D., to be published in Opt. Eng. July, 1984.Google Scholar
15. Tuck, B., “Introduction to Diffusion in Semiconductors,” IEEE Monograph Series 16 (1974).Google Scholar
16. Day, J. P., Pearson, R. G., and Basolo, F., J. Am. Chem. Soc. 90, 6933 (1968).CrossRefGoogle Scholar
17. Breiland, W. G., Coltrin, M. E. and Ho, P., these proceedings.Google Scholar