Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-12T17:00:28.272Z Has data issue: false hasContentIssue false

Light-Induced Metastable Changes in a-SiSx:H

Published online by Cambridge University Press:  15 February 2011

S. L. Wang
Affiliation:
Department of Physics, University of Utah, Salt Lake City UT 84112
P. C. Taylor
Affiliation:
Department of Physics, University of Utah, Salt Lake City UT 84112
Get access

Abstract

Metastable light-induced increases in the dark conductivities of a-SiSx:H alloys are explained as photo-activation of hydrogen-passivated sulfur donor sites. For a sulfur concentration (sulfur-to-silicon ratio) of 5.6 × 103 the excess dark conductivity as a function of illumination temperature is thermally activated with an activation energy of 0.72 eV. When the sulfur concentration is 3.3 × 102, the temperature dependence is very weak. This dramatic difference in the temperature dependence of the creation of increased dark conductivity is explained by a lowering of the annealing temperature for the metastable changes as the sulfur concentration increases. We discuss the influence of this new metastability on the possibility of obtaining more stable films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wrolski, C. R., Appl. Phys. Lett. 31, 292 (1977); J. Appl. Phys. 51, 3262 (1980).Google Scholar
2. Adler, D., Solar Cells 9, 133 (1981).Google Scholar
3. Stutzmann, M., Jackson, W. B. and Tsai, C. C., Phys. Rev. B 32, 23 (1985).Google Scholar
4. Redfield, D. and Bube, R. H., Phys. Rev. Lett. 65, 464 (1990).Google Scholar
5. Street, R. A., Tsai, C. C., Kakalios, J. and Jackson, W. B., Philos. Mag. B 56, 305 (1987).Google Scholar
6. Branz, H. M. and Silver, M., Phys. Rev. B 42, 7420 (1990).Google Scholar
7. Lucovsky, G., Williams, M. J., He, S. S., Cho, S. M., Jing, Z. and Witten, J. L., MRS Symp. Proc. 336, 637 (1994).Google Scholar
8. Fritzsche, H., J. Non-Cryst. Solids (1995), in press.Google Scholar
9. Dersh, H., Stuke, J. and Beichler, J., Appl. Phys. Lett. 38, 456 (1981).Google Scholar
10. Redfield, D. and Bube, R. H., J. Non-Cryst. Solids 137–138, 215 (1991).Google Scholar
11. Nakata, M., Wagner, S. and Peterson, T. M., J. Non-Cryst. Solids 164–166, 179 (1993).Google Scholar
12. Isoya, J., Yamasaki, S., Okushi, H., Matsuda, A. and Tanaka, K., Phys. Rev. B 47, 7013 (1993).Google Scholar
13. Shimizu, T., J. Non-Cryst. Solids 164–166, 163 (1993).Google Scholar
14. Wang, S. L. and Taylor, P. C., Solid State Commun. (1995), in press.Google Scholar
15. Wang, S. L., Viner, J. M., Anani, M., and Taylor, P. C., J. Non-Cryst. Solids 164–166, 251 (1993).Google Scholar
16. Wang, S. L., Lin, Z. H., Viner, J. M. and Taylor, P. C., MRS Symp. Proc. 336, 559 (1994).Google Scholar
17. Grimmeiss, H. G. and Janzen, E., in Deep Centers in Semiconductors, ed. by Pantelides, S. T. (Gordon and Breach, New York, 1986), p. 87.Google Scholar
18. Pensi, G., Roos, G., Holm, C.. Siiti, E. and Johnson, N. M., Appl. Phys. Lett. 51, 451 (1987).Google Scholar
19. Yoon, J. -H., Kim, M. -S. and Lee, C., J. Non-Cryst. Solids 114, 636 (1989).Google Scholar
20. Bennett, M.S., Newton, J.L. and Rajan, K., Proc. of 7th European PV Conf, edited by Goetzberger, A., Palz, W. and Willeke, G. (D. Reidel Publishing Co., Dordrecht, The Netherlands, 1986), p. 544.Google Scholar