No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Various copolymers of arylene vinylenes, having strong fluorescence, showed predominantly the emission in the multi-layer device using an electron-transporting material(ETM) such as tris(8-quinolinolato)aluminum(Alq3). The emission from Alq3 was suppressed due to the high hole-injection barrier from the copolymers to ETM in spite of low or no barriers of electron injection from ETM to the copolymers. We have successfully prepared highly hole-transporting polysilane having a triphenylamine group as a side chain(TPA-PS). The hole mobility as high as 10 cm3cm2/Vs is attributable to the intermolecular hopping process facilitated by the interaction between the polysilane backbone and the triphenylamine group. The polysilane is effectively used as a hole transporting material. The bilayer LED device consisting of TPA-PS and Akb3 showed high luminance (2000cd/m2) and high efficiency (4cd/A).