Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:55:05.118Z Has data issue: false hasContentIssue false

Light Emitting Nanostructures in Implanted Silicon Layers

Published online by Cambridge University Press:  09 August 2011

R. Plugaru
Affiliation:
Institute of Microtechnology, 72996 Bucharest, Romania
J. Piqueras
Affiliation:
Dpt. Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain
B. mendez
Affiliation:
Dpt. Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, 28040 Madrid, Spain
G. Craciun
Affiliation:
Institute of Microtechnology, 72996 Bucharest, Romania
N. Nastase
Affiliation:
Institute of Microtechnology, 72996 Bucharest, Romania
Get access

Abstract

Structural changes in amorphous silicon layers have been investigated as a process route to obtain light emitting silicon nanostructures. The optical emission of the layers was studied by cathodoluminescence (CL). Under 1013 -1014 boron ions/cm2 implantation, nanosized crystalline structures grow in the amorphous matrix. A dominant emission band, centered at 400 nm, appears in the catodoluminescence spectrum of the low dose implanted film, while spectra with a 400 nm intense band and 480–500 nm and 650 weak bands are characteristic of higher dose implanted and anodized layers. The structural changes are correlated with the emission properties in the 400–650 nm range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cullis, A. G., Canham, L.T., and Calcott, P.D. J., J.Appl. Phys. 83, 909 (1997).Google Scholar
2. Zaho, X., Schoenfeld, O., Kusano, J., Aoyagy, Y., and Sugano, T., Jpn. J. Appl. Phys. 33, L 649 (1994).Google Scholar
3. Song, H.Z., and Bao, X. M., Phys. Rev. B 55, 6988 (1997).Google Scholar
4. Harbeche, G., Krausbauer, L., Steigmeier, E.F., Widmer, A. E., Kappert, H.F. and Neuegebaure, G., J. Electrochem. Soc. 120, 675 (1984).Google Scholar
5. Voutas, A. T. and Hatalis, M.K., J. Electrochem. Soc. 139, 2659 (1993).Google Scholar
6. Zaho, X., Nomura, S., Aoyagi, Y., Sugano, T., J. Non-Cryst. Solids 198–200, 847 (1996).Google Scholar
7. Asano, T., Makihira, K., and Tsutae, H., Jpn. J. Appl. Phys. 33, 659 (1994).Google Scholar
8. Yamauchi, N. and Reif, R., J.Appl. Phys. 75, 3235 (1994).Google Scholar
9. Stolk, P.A., Saris, F.W., Berntsen, A.J.M., Weg, W.F. van der, Sealy, L.T., Barklie, R. C., Krotz, G. and Muller, G., J.Appl.Phys.75, 7266 (1994).Google Scholar
10. Yoshinouchi, A., Oda, A., Murata, Y., Morita, T. and Tsuchimoto, S., Jpn. J. Appl. Phys. 33, 4833 (1994).Google Scholar
11. Iverson, R.B. and Reif, R., J. Appl.Phys. 62, 1675 (1987).Google Scholar
12. Nomura, S., Zaho, X., Schoenfeld, O., Misawa, K., Kobayashi, T., Aoyagi, Y. and Sugano, T, Solid State Comm. 92 (8), 665 (1994).Google Scholar
13. Kalkhoran, N.M., Namavar, F. and Maruska, H.P., Appl. Phys. Lett. 63, 2661 (1993).Google Scholar
14. Han, P.G., Poon, M.C., Ko, P.K., Sin, J.K.O., J. Vac. Sci. Technol. B 14, 824 (1996).Google Scholar
15. Zaho, X., Schoenfeld, O., Komuro, S., Aoyagi, Y. and Sugano, T., Phys. Rev.B 50, 18654 (1994).Google Scholar
16. Edelberg, E., Bergh, S., Nanone, R., Hall, M. and Aydil, E.S., J. Appl.Phys. 81,241C, (1997).Google Scholar
17. Delgado, G. R., Lee, H. W. H., Kauzlarich, S. M., and Bley, R. A., Mat. Res. Soc. Symp. Proc. 452, 177 (1997).Google Scholar