Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:16:10.368Z Has data issue: false hasContentIssue false

Light Emitting Micropatterns of Porous Semiconductors

Published online by Cambridge University Press:  09 August 2011

D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, ON, Canada K IA 0R6
P. Schmuki
Affiliation:
Swiss Federal Institute of Technology, ETH/EPFL, Dept. of Materials Science, LC-DMX, CH-1015 Lausanne, Switzerland
L. E. Erickson
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, ON, Canada K IA 0R6
Get access

Abstract

We report a principle that allows writing visible light emitting semiconductor patterns of arbitrary shape down to the sub-micrometer scale. We demonstrate that porous semiconductor growth can be electrochemically initiated preferentially at surface defects created in an n-type substrate by Si++ focused ion beam bombardment. For n-type material in the dark, the electrochemical pore formation potential (Schottky barrier breakdown voltage) is significantly lower at the implanted locations than for an unimplanted surface. This difference in the threshold voltages is exploited to achieve the selectivity of the pore formation process. Visible light emitting patterns of porous Si and GaAs have been created in this way. At present, the size of the structures is limited only by the diameter of the writing ion beam, and pattern diameters in the 50–200-nm range are possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lockwood, D. J., Ed., Light Emission in Silicon (Academic Press, Boston, 1997).Google Scholar
2. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3. See, for example, Cullis, A. G., Canham, L. T., Calcott, P. D. J., J. Appl. Phys. 82, 909 (1997).Google Scholar
4. Hirschmann, K. D., Tsybeskov, L., Duttagupta, S. P., Fauchet, P. M., Nature 384, 338 (1996).Google Scholar
5. Schmuki, P., Erickson, L. E., Lockwood, D. J., Phys. Rev. Lett. 80, 4060 (1998).Google Scholar
6. Schmuki, P., Erickson, L. E., Lockwood, D. J., Fraser, J. W., Champion, G., Labbé, H. J., Appl. Phys. Lett. 72, 1039 (1998).Google Scholar
7. Xu, J. and Steckl, A. J., Appl. Phys. Lett. 65, 2081 (1994).Google Scholar
8. Duttagupta, S. P., Peng, C., Fauchet, P. M., Kurinec, S. K., Blanton, T. N., J. Vac. Sci. Technol. B 13, 1230 (1995).Google Scholar
9. Doan, V. V. and Sailor, M. J., Science 256, 1791 (1992).Google Scholar
10. Barbour, J. C., Dimos, D., Guilinger, T. R., Kelly, M. J., Tsao, S. S., Appl. Phys. Lett. 59, 2088 (1991).Google Scholar
11. Schmuki, P., Erickson, L. E., Lockwood, D. J., Fraser, J. W., Mason, B. F., Champion, G., Labbé, H. J., J. Electrochem. Soc. 146 (to be published in 1997).Google Scholar
12. Schmuki, P., Lockwood, D. J., Labbé, H. J., Fraser, J. W., Graham, M. J., in Pits and Pores: Formation, Properties and Significance for Advanced Luminescent Materials, edited by Schmuki, P., Lockwood, D. J., Isaacs, H. S., and Bsiesy, A. (Electrochemical Soc., Pennington, NJ, 1997), p. 112.Google Scholar
13. Schmuki, P., Fraser, J., Vitus, C. M., Graham, M. J., Isaacs, H., J. Electrochem. Soc. 143, 3316 (1996).Google Scholar
14. Schmuki, P., Lockwood, D. J., Labbé, H. J., Fraser, J. W., Appl. Phys. Lett. 69, 1620 (1996).Google Scholar
15. Lockwood, D. J., Schmuki, P., LabbW, H. J., Fraser, J. W., in Pits and Pores: Formation, Properties and Significance for Advanced Luminescent Materials, edited by Schmuki, P., Lockwood, D. J., Isaacs, H. S., and Bsiesy, A. (Electrochemical Soc., Pennington, NJ, 1997), p. 447.Google Scholar