Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:26:19.704Z Has data issue: false hasContentIssue false

Light Emission from Three-Dimensional Silicon-Germanium Nanostructures

Published online by Cambridge University Press:  01 February 2011

David J. Lockwood
Affiliation:
[email protected], National Research Council, Ottawa, Canada
J.-M. Baribeau
Affiliation:
[email protected], National Research Council, Ottawa, Canada
E.-K. Lee
Affiliation:
[email protected], New Jersey Institute of Technology, Newark, New Jersey, United States
H.-Y. Chang
Affiliation:
[email protected], New Jersey Institute of Technology, Newark, New Jersey, United States
Leonid Tsybeskov
Affiliation:
[email protected], New Jersey Institute of Technology, Newark, New Jersey, United States
Get access

Abstract

Three-dimensional SiGe nanostructures grown on Si using molecular beam epitaxy exhibit photoluminescence (PL) in the important spectral range of 1.3–1.6 μm. At a higher level of photo-excitation, thermal quenching of the PL intensity is suppressed and the previously accepted type II energy band alignment at Si/SiGe cluster hetero-interfaces no longer controls radiative carrier recombination. Instead, a dynamic type I energy band alignment governs the strong decrease in carrier radiative lifetime and further increase in the luminescence quantum efficiency. In contrast to the strongly temperature dependent and slow radiative carrier recombination found in bulk Si, Auger mediated PL emanating from the nanometer-thick Si layers is found to be nearly temperature independent with a radiative lifetime approaching 10−8 s, which is comparable to that found in direct band gap III-V semiconductors. Such nanostructures are thus potentially useful as CMOS compatible light emitters and in optical interconnects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Savage, N., IEEE Spectrum 39 (8), 32 (2002).Google Scholar
2. Mukherjee, B., IEEE J. Selected Areas in Communications 18, 1810 (2000).Google Scholar
3. Plant, D.V. and Kirk, A.G., Proc. IEEE 88, 806 (2000).Google Scholar
4. Miller, D.A.B., Proc. IEEE 88, 728 (2000).Google Scholar
5. Miller, D.A.B. and Edward, L., IEEE J. Sel. Top. Quantum Electr. 6, 1312 (2000).Google Scholar
6. Wada, H. and Kamijoh, T., IEEE Photon. Technol. Lett. 8, 173 (1996).Google Scholar
7. Razeghi, M., Defour, M., Blondeau, R., Omnes, F., Maurel, P., Acher, O., Brillouet, F., Fan, J.C.C-, and Salerno, J., Appl. Phys. Lett. 53, 2389 (1988).Google Scholar
8. Park, H., Fang, A., Kodama, S., and Bowers, J., Optics Express 13, 9460 (2005).Google Scholar
9. Fang, A.W., Park, H., Cohen, O., Jones, R., Paniccia, M.J., and Bowers, J.E., Optics Express 14, 9203 (2006).Google Scholar
10. Pavesi, L. and Lockwood, D.J., Silicon Photonics (Springer, Berlin, 2004).Google Scholar
11. Kanemitsu, Y., Phys. Reports 263, 1 (1995).Google Scholar
12. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature 384, 338 (1996).Google Scholar
13. Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. Appl. Phys. 82, 909 (1997)Google Scholar
14. Lu, Z.H., Lockwood, D.J., and Baribeau, J.-M., Nature 378, 258 (1995).Google Scholar
15. Tsybeskov, L. and Lockwood, D.J., in Semiconductor Nanocrystals: From Basic Principles to Applications, edited by Efros, A.L., Lockwood, D.J., and Tsybeskov, L. (Kluwer-Plenum, New York, 2003), pp. 209229.Google Scholar
16. Grom, G.F., Lockwood, D.J., McCaffrey, J.P., Labbé, H.J., Fauchet, P.M., White, B., Diener, J., Kovalev, D., Koch, F., and Tsybeskov, L., Nature 407, 358 (2000).Google Scholar
17. Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Zacharias, M., Fauchet, P.M., McCaffrey, J.P., and Lockwood, D.J., Appl. Phys. Lett. 72, 43 (1998).Google Scholar
18. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzo, G., and Priolo, F., Nature 408, 440 (2000).Google Scholar
19. Schuppler, S., Friedman, S.L., Marcus, M.A., Adler, D.L., Xie, Y.-H., Ross, F.M., Chabal, Y.J., Harris, T.D., Brus, L.E., Brown, W.L., Chaban, E.E., Szajowski, P.F., Christman, S.B., and Citrin, P.H., Phys. Rev. B 52, 4910 (1995).Google Scholar
20. Coffa, S., Franzò, G., and Priolo, F., Appl. Phys. Lett. 69, 2077 (1996).Google Scholar
21. Fukatsu, S., Usami, N., Shiraki, Y., Nishida, A., and Nakagawa, K., Appl. Phys. Lett. 63, 967 (1993).Google Scholar
22. Vescan, L. and Stoica, T., J. Lumin. 80, 485 (1998).Google Scholar
23. Leong, D., Harry, M., Reeson, K.J., and Homewood, K.P., Nature 387, 686 (1997).Google Scholar
24. Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
25. Mo, Y.-W., Savage, D. E., Swartzentruber, B. S., and Lagally, M. G., Phys. Rev. Lett. 65, 1020 (1990).Google Scholar
26. Savage, D.E., Liu, F., Zielasek, V., and Lagaly, M.G., in Germanium Silicon: Growth and Materials, edited by Hull, R. and Bean, J.C. (Academic, New York, 1999), pp. 4996.Google Scholar
27. Voigtländer, B. and Zinner, A., Appl. Phys. Lett. 63, 3055 (1993).Google Scholar
28. Floro, J.A., Chason, E., Freund, L.B., Twesten, R. D., Hwang, R.Q., and Lucadamo, G.A., Phys. Rev. B 59, 1990 (1999).Google Scholar
29. Jesson, D.E., Pennycook, S.J., Tischler, J.Z., Budai, J.D., Baribeau, J.-M., and Houghton, D.C., Phys. Rev. Lett. 70, 2293 (1993).Google Scholar
30. Shiraki, Y. and Sakai, A., Surf. Sci. Reports 59, 153 (2005).Google Scholar
31. Kamins, T.I., Carr, E.C., Williams, R.S., and Rosner, S.J., J. Appl. Phys. 81, 211 (1997).Google Scholar
32. Schittenhelm, P., Gail, M., Brunner, J., Nützel, J.F., and Abstreiter, G., Appl. Phys. Lett. 67, 1292 (1995).Google Scholar
33. Apetz, R., Vescan, L., Hartmann, A., Dieker, C., and Lüth, H., Appl. Phys. Lett. 66, 445 (1995).Google Scholar
34. Schmidt, O.G., Lange, C., and Eberl, K., Appl. Phys. Lett. 75, 1905 (1999).Google Scholar
35. Kamenev, B.V., Tsybeskov, L., Baribeau, J.-M., and Lockwood, D.J., Appl. Phys. Lett. 84, 1293 (2004).Google Scholar
36. Van de Walle, C.G. and Martin, R.M., Phys. Rev. B 34, 5621 (1986).Google Scholar
37. Houghton, D.C., Aers, G.C., Eric Yang, S. R., Wang, E., and Rowell, N.L., Phys. Rev. Lett. 75, 866 (1995).Google Scholar
38. Thewalt, M.L.W., Harrison, D.A., Reinhart, C.F., Wolk, J.A., and Lafontaine, H., Phys. Rev. Lett, 79, 269 (1997).Google Scholar
39. Schittenhelm, P., Engel, C., Findeis, F., Abstreiter, G., Darhuber, A.A., Bauer, G., Kosogov, A.O., and Werner, P., J. Vac. Sci. Technol. B 16, 1575 (1998).Google Scholar
40. El Kurdi, M., Sauvage, S., Fishman, G., and Boucaud, P., Phys. Rev. B 73, 195327 (2006).Google Scholar
41. Kamenev, B.V., Tsybeskov, L., Baribeau, J.-M., and Lockwood, D.J., Phys. Rev. B 72, 193306 (2005).Google Scholar
42. Baribeau, J.-M., Rowell, N.L., and Lockwood, D.J., J. Mat. Res. 20, 3278 (2005);Google Scholar
Baribeau, J.-M., Wu, X., Rowell, N.L., and Lockwood, D.J., J. Phys. Cond. Matt. 18, R139 (2006).Google Scholar
43. Baribeau, J.-M., Wu, X., and Lockwood, D.J., J. Vac. Sci. Technol. A 24, 663 (2006).Google Scholar
44. Baribeau, J.-M., Wu, X., Picard, M.-J., and Lockwood, D.J., in Group IV Semiconductor Nanostructures—2006, edited by Tsybeskov, L., Lockwood, D.J., Delerue, C., Ichikawa, M., and van Buuren, A.W. (Mater. Res. Soc. Symp. Proc. 958, Pittsburgh, PA, 2007), p. 119, and REFERENCES therein.Google Scholar
45. Lockwood, D.J., Wu, X., and Baribeau, J.-M., IEEE Trans. Nanotech. 6, 245 (2007).Google Scholar
46. Kamenev, B. V., Grebel, H., Tsybeskov, L., Kamins, T.I., Williams, R.S., Baribeau, J.-M., and Lockwood, D.J., Appl. Phys. Lett. 83, 5035 (2003).Google Scholar
47. Lockwood, D.J., Baribeau, J.-M., Kamenev, B.V., Lee, E.-K. and Tsybeskov, L., Semicond. Sci. Technol. 23, 064003 (2008);Google Scholar
Tsybeskov, L., Lee, E.-K., Chang, H.-Y., Kamenev, B.V., Lockwood, D.J., Baribeau, J.-M., and Kamins, T.I., Adv. Optical Technol. 2008, 218032 (2008).Google Scholar
48. Lenchyshyn, L.C., Thewalt, M.L.W., Sturm, J.C., Schwartz, P.V., Prinz, E.J., Rowell, N.L., Noël, J.-P., and Houghton, D.C., Appl. Phys. Lett. 60, 3174 (1992).Google Scholar
49. Baier, T., Mantz, U., Thonke, K., Sauer, R., Schäffler, F., and Herzog, H.-J., Phys. Rev. B 50, 15191 (1994).Google Scholar
50. Kamenev, B.V., Lee, E.-K., Chang, H.-Y., Han, H., Grebel, H., Tsybeskov, L., and Kamins, T.I., Appl. Phys. Lett. 89, 153106 (2006);Google Scholar
Lee, E.-K., Tsybeskov, L., and Kamins, T.I., Appl. Phys. Lett. 92, 033110 (2008).Google Scholar
51. Apetz, R., Vescan, L., Hartmann, A., Dieker, C., and Lüth, H., Appl. Phys. Lett. 66, 445 (1995).Google Scholar
52. Silver, R.N., Phys. Rev. B 11, 1569 (1975).Google Scholar
53. Gourley, P.L. and Wolfe, J.P., Phys. Rev. B 25, 6338 (1982).Google Scholar
54. Shah, J. and Dayem, A.H., Phys. Rev. Lett. 37, 861 (1976).Google Scholar
55. Wan, J., Jin, G.L., Jiang, Z.M., Luo, Y.H., Liu, J.L., and Wang, K.L., Appl. Phys. Lett. 78, 1763 (2001).Google Scholar
56. Seidel, W., Titkov, A., André, J.P., Voisin, P., and Voos, M., Phys. Rev. Lett. 73, 2356 (1994).Google Scholar
57. Cuthbert, J.D., Phys. Rev. B 1, 1552 (1970).Google Scholar
59. Brinkman, W.F. and Rice, T.M., Phys. Rev. B 7, 1508 (1973).Google Scholar
60. Hensel, J.C. and Dynes, R.C., Phys. Rev. Lett. 39, 969 (1997).Google Scholar
61. Msalland, M.E. and Wolfe, J.P., Phys. Rev. B 65, 195205 (2002).Google Scholar
62. Conwell, E.M., High Field Transport in Semiconductors (Academic Press, New York, 1967).Google Scholar
63. Pankove, J.I., Optical Processes in Semiconductors (Courier Dover, New York, 1975).Google Scholar
64. Ng, W.L., Lourenço, M.A., Gwilliam, R.M., Ledain, S., Shao, G., and Homewood, K.P., Nature 410, 192 (2001).Google Scholar
65. Reed, G.T., Nature 427, 595 (2004).Google Scholar