Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T17:54:04.905Z Has data issue: false hasContentIssue false

Light Controlled Photoluminescence Relaxation in Porous Silicon

Published online by Cambridge University Press:  28 February 2011

R. Czaputa
Affiliation:
Karl Franzens Universität, Institut für Experimentalphysik, Universitätsplatz 5, A-8010, Graz
R. Fritzl
Affiliation:
Karl Franzens Universität, Institut für Experimentalphysik, Universitätsplatz 5, A-8010, Graz
A. Popitsch
Affiliation:
Karl Franzens Universität, Institut für Anorganische Chemie, Schubertstrasse 1, A-8010, Graz, Austria
Get access

Abstract

We report results of photoluminescence (PL), FTIR and ESR investigations on nanoporous silicon (PS) where a reversible PL intensity relaxation effect in the chemically oxidised material is observed. To be activated the effect needs, however, additional preparation steps including light irradiation and ageing in ambient atmosphere. After illumination with visible light, the PL intensity is remarkably diminished. However it recovers in the dark within the time scale of minutes to hours under ambient atmosphere at room temperature. This cycle can be repeated several times. We show that the variation of the PL intensity is anticorrelated to an ESR signal attributed to silicon dangling bonds. From the IR spectrum, however, no significant change of the pore surface chemical structure can be observed during a cycle. Therefore we conclude that the variation of the PL intensity is rather controlled by a metastable change in the number of dangling bond centers than by modification of the surface chemistry in the porous silicon system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
2 Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58, 856 (1991)Google Scholar
3 Berbezier, I., Halimaoui, A., J. Appl. Phys. 74, 5421 (1993)Google Scholar
4 Tsybeskov, L. and Fauchet, P. M., Appl. Phys. Lett. 64, 1983 (1994)Google Scholar
5 Vasques, R. P., Fathauer, R. W., George, T., Grendzov, A. and Lin, T. L., Appl. Phys. Lett. 60, 1004 (1992)Google Scholar
6 Fuchs, H.D., Stutzmann, M., Brandt, M.S., Rosenbauer, M., Weber, J., Breitschwerdt, A., Deák, P., Cardona, M., Phys. Rev. B 48, 8172 (1993)Google Scholar
7 Tischler, M.A., Collins, R.T., Stathis, J.H., Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992)Google Scholar
8 Meyer, B.K., Petrova-Koch, V., Muschik, T., Linke, H., Omling, P., Lehmann, V., Appl. Phys. Lett. 63, 1930 (1993)Google Scholar
9 Delerue, C., Lannoo, M., Allan, G., J. Lumin. 57, 249 (1993)Google Scholar
10 Czaputa, R., Fritzl, R and Popitsch, A., Thin Solid Films (1994), in pressGoogle Scholar
11 Caplan, P.J., Poindexter, E.H., Deal, B.E., Razouk, R.R., J. Appl. Phys. 50, 5847 (1979)Google Scholar
12 Uchida, Y., Koshida, N., Koyama, H., Yamamoto, Y., Appl. Phys. Lett. 63, 961 (1993)Google Scholar
13 von Bardeleben, H.J., Stievenard, D., Grosman, A., Ortega, C., Siejka, J., Phys. Rev. B47, 10889 (1993)Google Scholar
14 Stutzmann, M., Jackson, W.B., Tsai, C.C., Phys. Rev. B 32, 23 (1985)Google Scholar