Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T05:22:48.879Z Has data issue: false hasContentIssue false

Light beam induced current measurements on ZnO Schottky diodes and MESFETs

Published online by Cambridge University Press:  31 January 2011

Holger von Wenckstern
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Halbleiterphysik, Leipzig, Germany
Zhipeng P. Zhang
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Halbleiterphysik, Leipzig, Germany
Michael Lorenz
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Halbleiterphysik, Leipzig, Germany
Christian Czekalla
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Halbleiterphysik, Leipzig, Germany
Heiko Frenzel
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Halbleiterphysik, Leipzig, Germany
Alexander Lajn
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Halbleiterphysik, Leipzig, Germany
Marius Grundmann
Affiliation:
[email protected], Universität Leipzig, Institut für Experimentelle Physik II, Halbleiterphysik, Leipzig, Germany
Get access

Abstract

The homogeneity of the Schottky barrier potential of reactively sputtered PdOy/ZnO Schottky contacts has been investigated by light beam-induced current measurements on the micrometer scale. It is found that a metallic capping layer, acting as an equipotential surface, is not necessary for PdOy/ZnO Schottky contacts in contrast to AgxO/ZnO Schottky diodes. Further, we probed the generated photocurrent of a ZnO-based metal-semiconductor field-effect transistor for a closed and open channel, respectively. The photocurrent is, in general, one order of magnitude larger for closed channel conditions. The position of maximum photocurrent generation shifts towards the drain for higher source drain voltages for closed channel conditions, whereas it is nearly independent of the source drain potential for an open channel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schifano, R., Monakhov, E. V., Grossner, U., and Svensson, B. G., Appl. Phys. Lett. 91, 193507 (2007).10.1063/1.2806194Google Scholar
2 Allen, M.W., Durbin, S.M. and Metson, J.B., Appl. Phys. Lett. 91, 053512 (2007).10.1063/1.2768028Google Scholar
3 Lajn, A., Wenckstern, H. v., Zhang, Z., Czekalla, C., Biehne, G., Lenzner, J., Hochmuth, H., Lorenz, M., Grundmann, M., Wickert, S., Vogt, C., and Denecke, R., J. Vac. Sci. Technol. B 27, 1769 (2009).10.1116/1.3086718Google Scholar
4 Wenckstern, H. von, Biehne, G., Rahman, R. A., Hochmuth, H., Lorenz, M., and Grundmann, M., Appl. Phys. Lett. 88, 092102 (2006).10.1063/1.2180445Google Scholar
5 Frenzel, H., Lorenz, M., Lajn, A., Wenckstern, H. v., Biehne, G., Hochmuth, H., and Grundmann, M., Appl. Phys. Lett. 95, 153503 (2009).10.1063/1.3242414Google Scholar
6 Werner, J. H. and Güttler, H. H., J. Appl. Phys. 69, 1522 (1991).10.1063/1.347243Google Scholar
7 Schmitsdorf, R.F. and Mönch, W., Eur. Phys. J. B 7, 457 (1999).10.1007/s100510050634Google Scholar
8 Mönch, W., Appl. Phys. A 87, 359 (2007).10.1007/s00339-007-3925-9Google Scholar
9 Yan, Yanfa, Al-Jassim, M. M., and Wei, Su-Huai, Appl. Phys. Lett. 89, 181912 (2006).10.1063/1.2378404Google Scholar
10 Wenckstern, H. von, Lajn, A., Laufer, A., Meyer, B. K., Hochmuth, H., Lorenz, M. and Grundmann, M., AIP conference proceedings (in press).Google Scholar
11 Mizuta, H., Yamaguchi, K. and Takahashi, S., IEEE Trans. Electron. Devices ED-34, 2027 (1987).10.1109/T-ED.1987.23194Google Scholar
12 Hori, Y., Kuzuhara, M., Ando, Y., and Mizuta, M., J. Appl. Phys. 87, 3483 (2000).10.1063/1.372370Google Scholar