Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:30:49.486Z Has data issue: false hasContentIssue false

Li Storage on TCNE and TCNE-(Doped)-Graphene Complexes: a Computational Study

Published online by Cambridge University Press:  08 September 2014

Yingqian Chen
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117575, Singapore
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117575, Singapore
*
Get access

Abstract

Li attachment to free tetracyanoethylene (TCNE) molecules and TCNE adsorbed on doped graphene is studied using density functional theory. While TCNE is adsorbed only weakly on ideal graphene, we identified a configuration in which TCNE is chemisorbed on Al-doped graphene via its C atom and a surface oxygen atom. Up to four Li atoms can be stored on both free and adsorbed TCNE with binding energies stronger than cohesive energy of the Li metal. TCNE immobilized on the conducting graphene-based substrate could therefore become an efficient anode material for organic Li ion batteries.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kousksou, T., Bruel, P., Jamil, A., El Rhafiki, T. and Zeraouli, Y., Solar Energy Materials and Solar Cells 120, 59 (2014).10.1016/j.solmat.2013.08.015CrossRefGoogle Scholar
Thackeray, M.M., Wolverton, C. and Isaacs, E.D., Energy & Environmental Science 5, 7854 (2012).10.1039/c2ee21892eCrossRefGoogle Scholar
Goodenough, J.B., Energy & Environmental Science 7, 14 (2014).10.1039/C3EE42613KCrossRefGoogle Scholar
Barbour, E., Wilson, I.A.G., Bryden, I.G., McGregor, P.G., Mulheran, P.A. and Hall, P.J., Energy & Environmental Science 5, 5425 (2012).10.1039/C2EE02419ECrossRefGoogle Scholar
Barnhart, C.J., Dale, M., Brandt, A.R. and Benson, S.M., Energy & Environmental Science 6, 2804 (2013).10.1039/c3ee41973hCrossRefGoogle Scholar
Lupi, C. and Pasquali, M., Minerals Engineering 16, 537 (2003).10.1016/S0892-6875(03)00080-3CrossRefGoogle Scholar
Liang, Y.L., Tao, Z.L. and Chen, J., Advanced Energy Materials 2, 742 (2012).10.1002/aenm.201100795CrossRefGoogle Scholar
Abouimrane, A., Weng, W., Eltayeb, H., Cui, Y., Niklas, J., Poluektov, O. and Amine, K., Energy & Environmental Science 5, 9632 (2012).10.1039/c2ee22864eCrossRefGoogle Scholar
NuLi, Y., Guo, Z., Liu, H. and Yang, J., Electrochemistry Communications 9, 1913 (2007).10.1016/j.elecom.2007.05.009CrossRefGoogle Scholar
Shukla, A.K. and Kumar, T.P., The Journal of Physical Chemistry Letters 4, 551 (2013).10.1021/jz3013497CrossRefGoogle Scholar
Zhang, Y.Y., Sun, Y.Y., Du, S.X., Gao, H.J. and Zhang, S.B., Applied Physics Letters 100 (2012).Google Scholar
Her, J.H., Stephens, P.W., Davidson, R.A., Min, K.S., Bagnato, J.D., van Schooten, K., Boehme, C. and Miller, J.S., Journal of the American Chemical Society 135, 18060 (2013).10.1021/ja410818eCrossRefGoogle Scholar
Xu, C.H., Xu, B.H., Gu, Y., Xiong, Z.G., Sun, J. and Zhao, X.S., Energy & Environmental Science 6, 1388 (2013).10.1039/c3ee23870aCrossRefGoogle Scholar
Liu, Y.Y., Artyukhov, V.I., Liu, M.J., Harutyunyan, A.R. and Yakobson, B.I., Journal of Physical Chemistry Letters 4, 1737 (2013).10.1021/jz400491bCrossRefGoogle Scholar
Koh, Y.W. and Manzhos, S., Mrs Communications 3, 171 (2013).10.1557/mrc.2013.24CrossRefGoogle Scholar
Hsu, C.L., Lin, C.T., Huang, J.H., Chu, C.W., Wei, K.H. and Li, L.J., Acs Nano 6, 5031 (2012).10.1021/nn301721qCrossRefGoogle Scholar
Jiang, Q.G., Ao, Z.M. and Jiang, Q., Physical Chemistry Chemical Physics 15, 10859 (2013).10.1039/c3cp00128hCrossRefGoogle Scholar
Kohn, W. and Sham, L.J., Physical Review 140, A1133 (1965).10.1103/PhysRev.140.A1133CrossRefGoogle Scholar
José, M.S., Emilio, A., Julian, D.G., Alberto, G., Javier, J., Pablo, O. and Daniel, S.-P., Journal of Physics: Condensed Matter 14, 2745 (2002).Google Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Physical Review Letters 77, 3865 (1996).10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
Grimme, S., Journal of Computational Chemistry 27, 1787 (2006).10.1002/jcc.20495CrossRefGoogle Scholar
Goodenough, J.B. and Kim, Y., Chemistry of Materials 22, 587 (2009).10.1021/cm901452zCrossRefGoogle Scholar