Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:22:24.184Z Has data issue: false hasContentIssue false

Length-scale Effects in Cascade Damage Production in Iron

Published online by Cambridge University Press:  15 March 2011

R. E. Stoller
Affiliation:
Materials Science and Technology Division Oak Ridge National Laboratory, Oak Ridge, TN 37831-6138
P. J. Kamenski
Affiliation:
Department of Materials Science and EngineeringUniversity of Wisconsin, Madison, WI (now University of Oxford, UK)
Yu. N. Osetsky
Affiliation:
Materials Science and Technology Division Oak Ridge National Laboratory, Oak Ridge, TN 37831-6138
Get access

Abstract

Molecular dynamics simulations provide an atomistic description of the processes that control primary radiation damage formation in atomic displacement cascades. An extensive database of simulations describing cascade damage production in single crystal iron has been compiled using a modified version of the interatomic potential developed by Finnis and Sinclair. This same potential has been used to investigate primary damage formation in nanocrystalline iron in order to have a direct comparison with the single crystal results. A statistically significant number of simulations were carried out at cascade energies of 10 keV and 20 keV and temperatures of 100 and 600K to make this comparison. The results demonstrate a significant influence of nearby grain boundaries as a sink for mobile defects during the cascade cooling phase. This alters the residual primary damage that survives the cascade event. Compared to single crystal, substantially fewer interstitials survive in the nanograined iron, while the number of surviving vacancies is similar or slightly greater than the single crystal result. The fraction of the surviving interstitials contained in clusters is also reduced. The asymmetry in the survival of the two types of point defects is likely to alter damage accumulation at longer times.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Averback, R. S., Benedek, R., and Merkle, K. L., Phys. Rev. B 18 (8), 4156 (1988).Google Scholar
2. Foreman, A.J.E., Phythian, W.J., English, C.A., Philos. Mag. A 66, 571 (1992).Google Scholar
3. Calder, A. F. and Bacon, D. J., J. Nucl. Mater. 207, 25 (1993).Google Scholar
4. Bacon, D.J. and Rubia, T. Diaz de la, J. Nucl. Mater. 216 (1994)Google Scholar
5. Bacon, D. J., Calder, A. F., Gao, F., Kapinos, V. G., and Wooding, S. J., Nucl. Instr. Meth. B 102, 37 (1995).Google Scholar
6. Phythian, W. J., Stoller, R. E., Foreman, A. J. E., Calder, A. F., and Bacon, D. J., J. Nucl. Mater. 223, 245 (1995).Google Scholar
7. Stoller, R. E., Odette, G. R., and Wirth, B. D., J. Nucl. Mater. 251, 49 (1997).Google Scholar
8. Stoller, R. E., J. Nucl. Mater. 276, 22 (2000).Google Scholar
9. Stoller, R. E. and Calder, A. F., J. Nucl. Mater. 283–287, 746 (2000).Google Scholar
10. Becquart, C. S., Domain, C., Legris, A., Duysen, J.C. Van, J. Nucl. Mater. 280, 73 (2000).Google Scholar
11. Samaras, M., Derlet, P. M., Swygenhoven, H. Van, and Victoria, M., Phys. Rev. Lett. 88, 125505 (2002).Google Scholar
12. Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984) and Erratum, Phil. Mag. A 53 (1986) 161.Google Scholar
13. Rose, M., Balogh, A. G., and Hahn, H., Nucl. Instr. Meth. Phys. Res., Sect. B 127–128, 119 (1997).Google Scholar
14. Chimi, Y., Iwase, A., Ishikawa, N., Kobiyama, M., Inami, T., and Okuda, S.., J. Nucl. Mater. 297, 355 (2001).Google Scholar
15. Shen, T. D., Feng, S., Tang, M., Valdez, J. A., Wang, Y. and Sickafus, K. E., Appl. Phys. Lett. 90, 263115 (2007)..Google Scholar
16. Samaras, M., Derlet, P. M., and Swygenhoven, H. Van, Phys. Rev. B 68, 224111 (2003).Google Scholar
17. Malerba, L., J. Nucl. Mater 351 28 (2006).Google Scholar
18. Finnis, M. W., “MOLDY6-A Molecular Dynamics Program for Simulation of Pure Metals,” AERE R-13182, UK AEA Harwell Laboratory (1988).Google Scholar
19. Finnis, M. W., Agnew, P. and Foreman, A. J. E., Physical Review B 44 567 (1991).Google Scholar
20. Gao, F., Bacon, D. J., Flewitt, P. E. J., and Lewis, T. A., J. Nucl. Mater. 249, 77 (1997).Google Scholar
21. Voronoi, G. Z. and Reine, J., Angew. Math. 134, 199 (1908).Google Scholar
22. Stoller, R. E., Golubov, S. I., Domain, C., and Becquart, C. S., J. Nucl. Mater. 382, 77 (2008).Google Scholar