Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:21:07.749Z Has data issue: false hasContentIssue false

A Leakage Current Model for “Flash-like”, Non-Volatile Resistive Switch Memory Cell

Published online by Cambridge University Press:  01 February 2011

Herbert Schroeder*
Affiliation:
[email protected], Forschungszentrum Juelich GmbH, IEM / IFF, Leo-Brandt-Strasse, Juelich, N/A, D-52425, Germany, +49-2461-61 6938, +49-2461- 61 8214
Get access

Abstract

An advanced leakage current model combining the electronic carrier injection /ejection at the electrode interfaces (described by thermionic emission) with the film conduction properties of a thin dielectric film (modelled as wide band gap semiconductor) is used to describe the current-voltage (I-V) curve of a flash-like resistive switch memory cell. Such a cell consists of a metal-insulator-metal capacitor structure with some embedded charge storage elements within the dielectric, e.g. a floating electrode (like in the gate of a “Flash”) or some metallic ions or clusters, which can be charged or discharged by an applied voltage or current. The resulting different conductance levels can be used for a resistive switching memory cell. This contribution presents calculated simulation results on I-V curves in dependence on polarity and concentration of the stored charge as well as on other parameters such as dielectric constant, background homogeneous defect densities in the dielectric and electrode properties. These parameters show a large influence on the switching ratio S = R(high) / R(low), an important parameter for the application in a device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dearnaly, G., Stoneham, A.M, and Morgan, D.V., Reports Prog. Phys. 33, 1129 (1970).Google Scholar
2. Snider, G., Kuekes, P., Hoog, T., and Stanley Williams, R., Appl. Phys. A 80, 1183 (2005).Google Scholar
3. Miyazaki, T. and Tezuka, N., Magn, J.. Magn. Mater. 139, L231 (1995).Google Scholar
4. Ovshinsky, S. R., Phys. Rev. Letters 36, 1469 (1968).Google Scholar
5. Beck, A., Bednorz, J.G., Gerber, Ch., Rossel, C., and Widmer, D., Appl. Phys. Letters 77, 139 (2000).Google Scholar
6. Balzani, V., Credi, A., Raymo, F.M., and Stoddard, J.F., Angew. Chem. Int. Ed. 39, 3349 (2000).Google Scholar
7. Ma, L.P., Liu, J., and Yang, Y., Appl. Phys. Letters 80, 2997 (2002).Google Scholar
8. Bozano, L.D., Kean, B.W., Deline, V.R., Salem, J.R., and Scott, J.C., Phys. Letters 84, 607 (2004).Google Scholar
9. Simmons, J.G. and Verderber, R.R., Proc. Royal Soc., Ser. A 301, 77 (1967).Google Scholar
10. Schroeder, H., Schmitz, S., and Meuffels, P., Phys. Letters 82, 781 (2003).Google Scholar
11. Schroeder, H. and Schmitz, S., Phys. Letters 83, 4381 (2003).Google Scholar
12. Crowell, C.R. and Sze, S.M., Solid-State Electronics 9, 1035 (1966).Google Scholar
13. Crowell, C.R. and Beguwala, M., Solid-State Electronics 14, 1149 (1971).Google Scholar
14. Baniecki, et al. , Journal Appl. Phys. 89, 2873 (2001); Journal Appl. Phys. 97, 114101 (2005).Google Scholar