Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-30T21:16:46.425Z Has data issue: false hasContentIssue false

Lead Iodide X-Ray and Gamma-Ray Spectrometers for Room and High Temperature Operation

Published online by Cambridge University Press:  10 February 2011

H. Hermon
Affiliation:
Sandia National Laboratories, Livermore, CA
R. B. James
Affiliation:
Sandia National Laboratories, Livermore, CA
J. Lund
Affiliation:
Sandia National Laboratories, Livermore, CA
E. Cross
Affiliation:
Sandia National Laboratories, Livermore, CA
A. Antolak
Affiliation:
Sandia National Laboratories, Livermore, CA
D. H. Morse
Affiliation:
Sandia National Laboratories, Livermore, CA
D. L. Medlin
Affiliation:
Sandia National Laboratories, Livermore, CA
E. Soria
Affiliation:
Sandia National Laboratories, Livermore, CA
J. Van Scyoc
Affiliation:
Sandia National Laboratories, Livermore, CA
B. Brunett
Affiliation:
Sandia National Laboratories, Livermore, CA
M. Schieber
Affiliation:
Also at the Hebrew university of Jerusalem, Jerusalem, Israel.
T. E. Schlesinger
Affiliation:
Carnegie Mellon University, Pittsburgh, PA
J. Toney
Affiliation:
Carnegie Mellon University, Pittsburgh, PA
M. Goorsky
Affiliation:
UCLA, Los Angeles, CA
Hojun Yoon
Affiliation:
UCLA, Los Angeles, CA
A. Burger
Affiliation:
Fisk University, Nashville, TN
L. Salary
Affiliation:
Fisk University, Nashville, TN
K.-T. Chen
Affiliation:
Fisk University, Nashville, TN
Y.-C. Chang
Affiliation:
University of Illinois, Urbana, IL
K. Shah
Affiliation:
RMD, Inc., Watertown, MA
Get access

Abstract

In this study we report on the results of the investigation of lead iodide material properties. The effectiveness of a zone refining purification method on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. We show that this zone refining method is very efficient in removing impurities from lead iodide, and we also determine the segregation coefficient for some of these impurities. Triple axis x-ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was much improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier - phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Palosz, B., Phys. Stat. Sol. (a) 80, 11(1983).Google Scholar
2. Roth, S. and Willig, W. R, Appl. Phys. Lett. 18, 328(1971).Google Scholar
3. Willig, W. R, Nucl. Instr. and Meth., 101 (1972) 23.Google Scholar
4. Manfredotti, C., Murri, R., Quirini, A., and Vasanelli, L., IEEE Trans. Nuc. Sci. NS–24, 126(1977).Google Scholar
5. Baldini, G. and Franch, S., Phys. Rev. Lett.,26, 503 (1971).Google Scholar
6. Schluter, L. Ch. and Schluter, M., Phys. Rev. B9, 1652 (1954).Google Scholar
7. Olschner, F., Lund, J. C., Shah, K. S., and Squillante, M. R., ICFA Instrum. Bull. 7, 9(1989).Google Scholar
8. Minder, R., Ottaviani, G., and Canali, C., Phys. Chem. Solids 37, 417(1976).Google Scholar
9. Lund, J.C., Shah, K.S., Squillante, M.R., and Sinclair, F., IEEE Trans. Nuc. Nci. NS–35, 89 (1988).Google Scholar
10. Lund, J.C., Shah, K.S., Squillante, M.R., Moy, L.P., Sinclair, F. and Entine, G., Nucl. Inst. and Meth. A283, 299 (1989).Google Scholar
11. Lund, J.C., Shah, K.S., Olschner, F., Zhang, J., Moy, L.P., Medrick, F., and Squillante, M.R., Nucl. Inst. and Meth. A322, 464 (1992).Google Scholar
12. Zhang, J., Shah, K.S., Olschner, F., Lund, J.C., Moy, L.P., Daley, K., Cirignano, L., and Squillante, M. R., Nucl. Inst. and Meth. A322, 499 ( 1992).Google Scholar
13. Dominique, D.C., James, R.B., Feemster, H., Anderson, R., Antolak, A.J., Morse, D.H., Pontau, A.E., Jayatirtha, H., Burger, A., Bao, X.J., Schlesinger, T.E., Bench, G.S., and Heikkinen, D.W., Mat. Res. Symp. Proc. 302, 335(1993).Google Scholar
14. Deich, V. and Roth, M., Nucl. Instr. and Meth., Vol.380, 169(1996).Google Scholar
15. Lund, J.C., Olschner, F. and Burger, A., in Semiconductors for Room Temperature Nuclear Detector Applications, edited by Schlesinger, T.E. and James, R.B., in Semiconductors and Semimetals, Vol.43 (Academic Press, San Diego, 1995) 443.Google Scholar
16. David, D.C., Burger, A., Wang, W., James, R.B., Schlesinger, T.E. and Lund, J.C., Proc. SPIE, Vol.1734 (1992) 146.Google Scholar
17. Rao, M. and Srivastava, O.N., J. Phys. D: Appl. Phys. 11, 919(1978).Google Scholar
18. Chaudhary, S.K. and Trigunayat, G.C., J. Crystal Growth 62, 398(1983).Google Scholar
19. Chand, M. and Trigunayat, G. C., J. Crystal Growth 39, 299(1977).Google Scholar
20. George, M.A., Azoulay, M., Jayatirha, H. N., Biao, Y., Burger, A., Collins, W. E. and Silberman, E.. J. of Crystal Growth, 137, 299 (1994)Google Scholar
21. Eckstein, J., Erler, B. and Benz, K. W.. Mat. Res. Bull. 27, 357(1992).Google Scholar
22. Pfann, W.G., “Zone Melting”, Robert E. Kreiger Publishing Co., Huntington, New-York (1978).Google Scholar
23. Brodin, M.S., Gushcha, A.O., Taranenko, L.V., Tishchenko, V.V., Khotyaintsev, V.N., Shevel, S.G., Sov. Phys. Solid State 28, 1658(1986).Google Scholar