Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:30:27.984Z Has data issue: false hasContentIssue false

Leaching Behavior of Fossil Fuel Wastes: Mineralogy and Geochemistry of Calcium

Published online by Cambridge University Press:  25 February 2011

Dhanpat Rai
Affiliation:
Battelle, Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352.
L. E. Eary
Affiliation:
Battelle, Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352.
S. V. Mattigod
Affiliation:
Battelle, Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352.
C. C. Ainsworth
Affiliation:
Battelle, Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352.
J. M. Zachara
Affiliation:
Battelle, Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352.
Get access

Abstract

A literature review [1] of the leaching behavior of inorganic constituents contained in fossil fuel wastes indicated that most of the available information deals primarily with (1) determination of the elemental composition of different wastes, (2) examination of the physical characteristics of waste solids, and (3) empirical leaching studies involving different solutions and procedures (e.g., water, acids, extraction procedure, toxicity characteristic leaching procedure). A comprehensive mechanistic approach and data are needed to predict accurately the composition of pore waters from fossil fuel wastes. An approach that relates the aqueous concentrations in leachates to solubility-controlling or adsorption-controlling solid phases- in the wastes is described. The behavior of calcium is used as an example to show the relevance of existing data to predicting leachate composition and to identify the type of data needed. The application of this approach to pore waters from flue gas desulfurization sludge shows that Ca concentrations can be accurately predicted from the nature of the Ca solids present and the thermo-chemical data descriptive of precipitation/dissolution and complexation reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rai, D., Ainsworth, C. C., Eary, L. E., Mattigod, S. V. and Jackson, D. R., Inorganic and Organic Constituents and Their Geochemical Behavior in Fossil Fuel Wastes: A Critical Review, Volume 1 of EPRI EA-(draft report) (Electric Power Research Institute, Palo Alto, California, 1986).Google Scholar
2. Ainsworth, C. C., Rai, Dhanpat and Garland, T. R., EPRI EA-(in preparation).Google Scholar
3. Valkovic, V., Trace Elements in Coal (CRC Press, Boca Raton, Florida, 1983).Google Scholar
4. Adriano, D. C., Page, A. L., Elseewi, A. A., Chang, A. C. and Straughan, I., J. Environ. Qual. 9, 333344 (1980).Google Scholar
5. Suloway, J. J., Skelly, T. M., Roy, W. R., Dickerson, D. R., Schuller, R. M. and Griffin, R. A., Chemical and Toxicological Properties of Coal Fly Ash, Environmental Geology Notes 105 (Illinois Department of Energy and Natural Resources, Champaign, 1983).Google Scholar
6. Roy, W. R., Thiery, R. G., Schuller, R. M. and Suloway, J. J., Coal Fly Ash: A Review of the Literature and Proposed Classification System with Emphasis on Environmental Impacts, Environmental Geology Notes 96 (Illinois State Geological Survey, Champaign, 1981).Google Scholar
7. Dahlberg, M. D., Environ. Sci. Technol. 17, 175177 (1983).Google Scholar
8. Gladney, E. S., Wangen, L. E., Curtis, D. B. and Jurney, E. T., Environ. Sci. Technol. 12, 10841085 (1978).Google Scholar
9. Holland, W. F., Wilde, K. A., Parr, J. L., Lowell, P. S. and Pohler, R. F., The Environmental Effects of Trace Elements in the Pond Disposal of Ash and Flue Gas Desulfurization Sludge, EPRI 202 (Electric Power Research Institute, Palo Alto, California, 1975).Google Scholar
10. Kaakinen, J. W., Jorden, R. M., Lawasani, M. H. and West, R. E., Environ. Sci. Technol. 9, 862869 (1975).Google Scholar
11. Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldman, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., Van Hook, R. I. and Bolton, N., Environ. Sci. Technol. 9, 973979 (1975).Google Scholar
12. Kopsick, D. A. and Angino, E. E., J. Hydrol. 54, 341356 (1981).Google Scholar
13. Liskowitz, J. W., Grow, J., Sheih, M., Trattner, R., Kohut, J. and Zwillenberg, M., Sorbate Characteristics of Fly Ash (New Jersey Institute of Technology, Newark, 1983).Google Scholar
14. Small, J. A., PhD thesis, University of Maryland, 1976.Google Scholar
15. Terman, G. L., Solid Wastes from Coal-Fired Power Plants: Use or Disposal on Agricultural Lands, Bulletin Y-129 (National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama, 1978).Google Scholar
16. Summers, K. V., Rupp, G. L. and Gherini, S. A., Physical-Chemical Characteristics of Utility Solid Wastes, EPRI EA-3236 (Electric Power Research Institute, Palo Alto, California, 1983).Google Scholar
17. Kuryk, B. A., Bodek, I. and Santhanam, C. J., Leaching Studies on Utility Solid Wastes: Feasibility Experiments, EA-4215 (Electric Power Research Institute, Palo Alto, California, 1985).Google Scholar
18. Stinespring, C. D., Harris, W. R., Cook, J. M. and Casleton, K. H., Appl. Spectroscopy 39, 853856 (1985).Google Scholar
19. Giavarini, C., Fuel 61, 549552 (1982).Google Scholar
20. Burriesci, N., Corigliano, F., Primerano, P., Zipelli, C. and Petrera, M., J. Chem. Soc., Faraday Trans. 1 80, 17771785 (1984).Google Scholar
21. Henry, W. M. and Knapp, K. T., Environ. Sci. Technol. 14, 450456 (1980).Google Scholar
22. Smith, R. D., Prog. Energy Combust. Sci. 6, 59119 (1980).Google Scholar
23. Lindsay, W. L., Chemical Equilibria in Soils (Wiley, New York, 1979).Google Scholar
24. Jackson, M. L., in Chemistry of the Soil, edited by Bear, F. E., 2nd ed. (Van Nostrand Reinhold, New York, 1964), pp. 71141.Google Scholar
25. Krauskopf, K. B., Introduction to Geochemistry (McGraw-Hill, New York, 1967).Google Scholar
26. Mason, B., Principles of Geochemistry (Wiley, New York, 1966).Google Scholar
27. Finkleman, R. B., PhD thesis, University of Maryland, 1980.Google Scholar
28. Hansen, L. D. and Fisher, G. L., Environ. Sci. Technol. 14, 11111117 (1980).Google Scholar
29. Block, C. and Dams, R., Environ. Sci. Technol. 10, 10111017 (1976).Google Scholar
30. Campbell, J. A., Laul, J. C., Nielson, K. K. and Smith, R. D., Anal. Chem. 50, 10321040 (1978).Google Scholar
31. Coles, D. G., Ragaini, R. C., Ondov, J. M., Fisher, G. L., Silberman, D. and Prentice, B. A., Environ. Sci. Technol. 13, 455459 (1979).Google Scholar
32. Davison, R. L., Natusch, D. F. S., Wallace, J. R. and Evans, C. A. Jr., Environ. Sci. Technol. 8, 11071113 (1974).Google Scholar
33. Natusch, D. F. S., Wallace, J. R. and Evans, C. A., Science 183, 202204 (1974).Google Scholar
34. Smith, R. D., Campbell, J. A. and Nielson, K. K., Fuel 59, 661665 (1980).Google Scholar
35. Smith, R. D., Campbell, J. A. and Nielson, K. K., Environ. Sci. Technol. 13, 553558 (1979).Google Scholar
36. Warren, C. J. and Dudas, M. J., J. Environ. Qual. 13, 530538 (1984).Google Scholar
37. Bauer, C. F. and Natusch, D. F. S., Environ. Sci. Technol. 15, 783788 (1981).Google Scholar
38. Luke, W. I., Nature and Distribution of Particles of Various Sizes in Fly Ash, Technical Report No. 6–583 (U.S. Army Corps of Engineers, Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, 1961).Google Scholar
39. Brzakovic, P. N., in Ash Utilization: Proceedings of the Second Ash Utilization Symposium, Bureau of Mines Information Circular IC 8488 (U.S. Government Printing Office, Washington, D.C., 1970), pp. 205–219.Google Scholar
40. Harvey, R. D., Petrographic and Mineralogical Characteristics of Carbonate Rocks Related to Sulfur Dioxide Sorption in Flue Gases, NTIS Pb-206–487 (Illinois State Geological Survey, Urbana, 1971).Google Scholar
41. Plank, C. O., PhD thesis, Virginia Polytechnic Institute and State University, 1974.Google Scholar
42. Page, A. L., Elseewi, A. A. and Straughan, I. R., Residue Reviews 71, 83120 (1979).Google Scholar
43. Talbot, R. W., Anderson, M. A. and Andren, A. W., Environ. Sci. Technol. 12, 10561062 (1978).Google Scholar
44. Warren, C. J. and Dudas, M. J., J. Environ. Qual. 14, 405410 (1985).Google Scholar
45. Liem, H., Sandstroem, M., Wallin, T., Carne, A., Rydevik, U., Thurenius, B. and Moberg, P.O., in International Conference on Coal Fired Power Plants and the Aquatic Environment, CONF-8208123 (Water Quality Institute, Hoersholm, Denmark, 1982), pp. 338–366.Google Scholar
46. Raask, E., J. Inst. Energy, June 1980, 70–75.Google Scholar
47. Simons, H. S. and Jeffery, J. W., J. Appl. Chem. 10, 328336 (1960).Google Scholar
48. Manz, O. E., in Technology and Use of Lignite, Proceedings of a Bureau of Mines and University of North Dakota Symposium, Bureau of Mines Information Circular IC 8650 (U.S. Government Printing Office, Washington, D.C., 1974), pp. 204–219.Google Scholar
49. Styron, R. W., in Ash Utilization: Proceedings of the Second Ash Utilization Symposium, Bureau of Mines Information Circular IC 8488 (U.S. Government Printing Office, Washington, D.C., 1970), pp. 151–164.Google Scholar
50. Natusch, D. F. S., Bauer, C. F., Matusiewicz, H., Evans, C. A., Baker, J., Loh, A., Linton, R. W. and Hopke, P. K., in International Conference on Heavy Metals in the Environment; Symposium Proceedings Volume II, Part 2 (Toronto, 1975), pp. 553–575.Google Scholar
51. Scheetz, B. E. and White, W. B., in Fly Ash and Coal Conversion By-Products: Characterization, Utilization and Disposal I, edited by McCarthy, G. J. and Lauf, R. J., Mat. Res. Soc. Symp. Proc. Vol.43 (Materials Research Society, Pittsburgh, 1985), pp. 5360.Google Scholar
52. Groenewold, G. H. and Manz, O. E., Disposal of Fly Ash and Fly Ash Alkali FGD Waste in a Western Decoaled Strip Mine – Interim Report (Engineering Experiment Station, University of North Dakota, Grand Forks, 1982).Google Scholar
53. Humenick, M. J., Lang, M. and Jackson, K. F., J. Water Pollut. Control Fed. 55, 310316 (1983).Google Scholar
54. Kokubu, M., in Proceedings of the Fifth International Symposium on the Chemistry of Cement, Vol.4: Admixtures and Special Cements (Cement Association of Japan, Tokyo, 1969), pp. 75–113.Google Scholar
55. McCarthy, G. J., Swanson, K. D., Schields, P. J. and Groenewold, G. H., Mineralogical Controls on Toxic Element Contamination of Groundwater from Buried Electrical Utility Solid Wastes. 1. Solid Waste Mineralogy. 2. Literature Review of Fly Ash Mineralogy, PB-83-265116 (North Dakota State University, Fargo, 1983).Google Scholar
56. Mattigod, S. V. and Ervin, J. O., Fuel 62, 927931 (1983).Google Scholar
57. Roy, W. R. and Griffin, R. A., Environ. Sci. Technol. 18, 739742 (1984).Google Scholar
58. Theis, T. L., Halvorsen, M., Levine, A., Stankunas, A. and Unites, D., in Report and Technical Studies on the Disposal and Utilization of Fossil Fuel Combustion By-Products, submitted to the U.S. Environmental Protection Agency, 1982.Google Scholar
59. Biggs, D. L. and Bruns, J. J., in Fly Ash and Coal Conversion By-Products: CharacterizationI Utilization and Disposal I, edited by McCarthy, G. J. and Lauf, R. J., Mat. Res. Soc. Symp. Proc. Vol.43(Materials Research Society, Pittsburgh, 1985), pp. 2129.Google Scholar
60. Rehsi, S. S., in Ash Utilization: Third International Symposium, Bureau of Mines Information Circular IC 8640 (U.S. Government Printing Office, Washington, D.C., 1973), pp. 231245.Google Scholar
61. Malek, R. A. I. and Roy, D. M., in Fly Ash and Coal Conversion By-Products: Characterizationt Utilization and Disposal I, edited by McCarthy, G. J. and Lauf, R. J., Mat. Res. Soc. Symp. Proc. Vol.43(Materials Research Society, Pittsburgh, 1985), pp. 4150.Google Scholar
62. Mattigod, S. V., Scanning. Electron Microscopy II, 611617 (1982).Google Scholar
63. Roy, D. M., Luke, K. and Diamond, S., in Fly Ash and Coal Conversion By- Products: Characterization Utilization and Disposal I, edited by McCarthy, G. J. and Lauf, R. J., Mat. Res. Soc. Symp. Proc. Vol.43(Materials Research Society, Pittsburgh, 1985), pp. 320.Google Scholar
64. Mattigod, S. V., Environ. Technol. Lett. 7, 485490 (1983).Google Scholar
65. Selmeczi, J. G. and Knight, R. G., in Ash Utilization: Third International Symposium, Bureau of Mines Information Circular IC 8640 (U.S. Government Printing Office, Washington, D.C., 1973), pp. 123138.Google Scholar
66. Green, J. B. and Manahan, S. E., Anal. Chem. 50, 19751980 (1978).Google Scholar
67. Dreesen, D. R., Wangen, L. E., Gladney, E. S. and Owens, J. W., in Environmental Chemistry and Cycling Processes, edited by Adrioni, D. C. and Brisbin, I. L., CONF-760429 (National Technical Information Service, Oak Ridge, Tennessee, 1976), pp. 240252.Google Scholar
68. Elseewi, A. A., Page, A. L. and Grimm, S. R., J. Environ. Qual. 9, 424428 (1980).Google Scholar
69. Harris, W. R. and Silberman, D., Environ. Sci. Technol. 17, 139145 (1983).Google Scholar
70. Linton, R. W., Williams, P., Evans, C. A. Jr., and Natusch, D. F. S., Anal. Chem. 49, 15141520 (1977).Google Scholar
71. Roy, W. R., Griffin, R. A., Dickerson, D. R. and Schuller, R. M., Environ. Sci. Technol. 18, 734739 (1984).Google Scholar
72. Cherkauer, D. S., Ground Water 18, 544550 (1980).Google Scholar
73. Wagman, D. P., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L. and Nuttall, R. L., J. Phys. Chem. Ref. Data, Vol. 11, Supplement 2 (American Chemical Society and the American Institute for Physics, New York, 1982).Google Scholar
74. Smith, R. M. and Martell, A. E., Critical Stability Constants. Volume 4: Inorganic Complexes (Plenum, New York, 1976).Google Scholar
75. Felmy, A. R., Girvin, D. C. and Jenne, E. A., MINTEQ ndash; A Computer Program for Calculating Aqueous Geochemical Equilibria, EPA 600-3-84-032 (U.S. EPA, Office of Research and Development, Athens, Georgia, 1984).Google Scholar