Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T03:33:55.216Z Has data issue: false hasContentIssue false

Layered Cuprates

Published online by Cambridge University Press:  15 February 2011

P. A. Salvador
Affiliation:
Materials Science and Engineering Department, Northwestern University, 2225 N. Campus Dr., Evanston, IL 60208–3108
K. Otzschi
Affiliation:
Department of Chemistry, 2145 Sheridan Rd., Northwestern University, Evanston IL 60208
H. Zhang
Affiliation:
Materials Science and Engineering Department, Northwestern University, 2225 N. Campus Dr., Evanston, IL 60208–3108
J. R. Mawdsley
Affiliation:
Materials Science and Engineering Department, Northwestern University, 2225 N. Campus Dr., Evanston, IL 60208–3108
K. B. Greenwood
Affiliation:
Department of Chemistry, 2145 Sheridan Rd., Northwestern University, Evanston IL 60208
B. M. Dabrowsi
Affiliation:
Department of Physics, Northern Illinois University, DeKalb, IL 60115
L. D. Marks
Affiliation:
Materials Science and Engineering Department, Northwestern University, 2225 N. Campus Dr., Evanston, IL 60208–3108
T. O. Mason
Affiliation:
Materials Science and Engineering Department, Northwestern University, 2225 N. Campus Dr., Evanston, IL 60208–3108
K. R. Poeppelmeier*
Affiliation:
Department of Chemistry, 2145 Sheridan Rd., Northwestern University, Evanston IL 60208
*
Author to whom correspondence should be addressed
Get access

Abstract

Layered copper-oxide superconductors exhibit the highest critical transition temperatures of any materials. Yet all of the known double perovskites A′A″B′B″O6 containing copper have a random or rock salt distribution of the B cations with the exception of the unique layered arrangement found in La2CuSnO6. Only the layered arrangement contains the CuO22- planes which are necessary for high-temperature superconductivity. The occurrence of layered or two dimensional structures increases markedly when vacancies are introduced on the oxygen sublattice, as evidenced in Ln2AEmCu2TimO5+3m (Ln = lanthanide, Y: AE = Ba, Ca: 2 ≤ m ≤ 4). Similarities among oxygen-deficient structures, especially those with two-dimensional solid-state features, are discussed. Combined conductivity and thermopower analysis are presented to elucidate their unique internal chemistry, defect structure, and conduction parameters. In particular, data for La2-xSrxCuSnO6 are presented and related to the crystal chemistry of the copper-oxygen layer. These data are compared with La2Ba2Cu2Sn2O11 and La2Ba2Cu2Ti2O11 to illustrate the significance of oxygen vacancies on the properties of the copper oxygen planes. New layered cuprates are discussed including the mixed A-site stoichiometries Ln′Ln″AEmCu2TimO5+3m (Ln = lanthanide, Y: AE = Ba, Ca: 2 ≤ m ≤ 4) which contain the smaller lanthanide (Ln″) ordered between the closely spaced, facing sheets of Cu-O square pyramids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Salvador, P. A., Mason, T. O., Hagerman, M. E. and Poeppelmeier, K. R., in Chemistry of Advanced Materials: A New Discipline. edited by Interrante, L.V. and Hampden-Smith, M. (VCH, In Press).Google Scholar
2. Greenwood, K. B., Anderson, M. T., Poeppelmeier, K. R., Novikov, D. L., Freeman, A. J., Dabrowski, B., Gramsch, S. A. and Burdett, J. K., Physica C 235–240, p. 349 (1994).Google Scholar
3. Greenwood, K. B., Sarjeant, G. M., Poeppelmeier, K. R., Salvador, P. A., Mason, T. O., Dabrowski, B., Rogacki, K. and Chen, Z., Chem. Mater. 7, p. 1355 (1995).Google Scholar
4. Salvador, P. A., Mason, T. O., Otzschi, K., Greenwood, K. B., Poeppelmeier, K. R. and Dabrowski, B., J. Am. Chem. Soc. (Submitted).Google Scholar
5. Salvador, P. A., Shen, L., Mason, T. O., Greenwood, K. B. and Poeppelmeier, K. R., J. Solid State Chem. 119, p. 80 (1995).Google Scholar
6. Otzschi, K. D., Poeppelmeier, K. R., Salvador, P. A., Mason, T. O., Zhang, H. and Marks, L. D., J. Am. Chem. Soc. 118, p. 8951 (1996).Google Scholar
7. Anderson, M. T. and Poeppelmeier, K. R., Chem. Mater. 3, p. 476 (1991).Google Scholar
8. Anderson, M. T., Poeppelmeier, K. R., Gramsch, S. A. and Burdett, J. K., J. Solid State Chem. 102, p. 164 (1993).Google Scholar
9. Trestman-Matts, A., Dorris, S. E. and Mason, T. O., J. Am. Ceram. Soc. 66, p. 589 (1983).Google Scholar
10. Anderson, M. T., Vaughey, J. T. and Poeppelmeier, K. R., Chem. Mater. 5, p. 151 (1993).Google Scholar
11 Raveau, B., Michel, C. and Hervieu, M., J. Solid State Chem. 88, p. 140 (1990).Google Scholar
12. Raveau, B., Michel, C., Hervieu, M. and Groult, D., Crystal Chemistry of High-Tc Superconducting Copper Oxides (Springer-Verlag, Berlin, 1991).Google Scholar
13. Goodenough, J. B. and Manthiram, A., J. Solid State Chem. 88, p. 115 (1990).Google Scholar
14. Anderson, M. T. and Poeppelmeier, K. R., Appl. Supercon. 1, p. 493 (1993).Google Scholar
15. Anderson, M. T., Greenwood, K. B., Taylor, G. A. and Poeppelmeier, K. R., Prog. Solid St. Chem. 22, p. 197 (1993).Google Scholar
16. Yamada, N. and Ido, M., Physica C 203, p. 240 (1992).Google Scholar
17. Longo, J. M. and Raccah, P. M., J. Solid Stae Chem. 6, p. 526 (1973).Google Scholar
18. Jorgensen, J. D., Schüttler, H.-B., Hinks, D. G., Capone, D. W., Zhang, H. K. and Brodsky, M. B., Phys. Rev. Lett. 58, p. 1024 (1987).Google Scholar
19. Novikov, D. L., Freeman, A. J., Poeppelmeier, K. R. and Zhukov, V. P., Physica C 252, p. 7 (1995).Google Scholar
20. Su, M.-Y., Elsbernd, C. E. and Mason, T. O., J. Am. Ceram. Soc. 73, p. 415 (1990).Google Scholar
21. Tomlins, G. W., Jeon, N.-L., Mason, T. O., Groenke, D. A., Vaughey, J. T. and Poeppelmeier, K. R., J. Solid State Chem. 109, p. 338 (1994).Google Scholar
22. Jonker, G. H., Philips Res. Repts 23, p. 131 (1968).Google Scholar
23. Su, M.-Y., Sujata, K. and Mason, T. O., in Ceramics Superconductors II. edited by Yan, M.F. (The American Ceramic Society, Westerville, Ohio, 1988), p. 99.Google Scholar
24. Su, M.-Y., Elsbernd, C. E. and Mason, T. O., Physica C 160, p. 114 (1989).Google Scholar
25. Hong, B.-S. and Mason, T. O., in Superconductivity and Ceramic Superconductors II. edited by Nair, K.M., Balachandran, U., Chiang, Y.-M. and Bhalla, A.S. (American Ceramic Society, Westerville OH, 1991), p. 95.Google Scholar
26. Anderson, M. T., Poeppelmeier, K. R., Zhang, J. P., Fan, H.-J. and Marks, L. D., Chem. Mater. 4, p. 1305 (1992).Google Scholar
27. Wu, M. K., Ashbum, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. and Chu, C. W., Phys. Rev. Lett. 58, p. 908 (1987).Google Scholar
28. Beno, M. A., Soderholm, L., Capone, I. D. W., Hinks, D. G., Jorgensen, J. D., Grace, J. D., Schuller, I. K., Segre, C. U. and Zhang, K., Appl. Phys. Lett. 51, p. 57 (1987).Google Scholar
29. Vaughey, J. T., Thiel, J. P., Hasty, E. F., Groenke, D. A., Stern, C. L., Poeppelmeier, K. R., Dabrowski, B., Hinks, D. G. and Mitchell, A. W., Chem. Mater. 3, p. 935 (1991).Google Scholar
30. Maeda, H., Tanaka, Y., Fukutomi, M. and Asano, T., Jp. J. Appl. Phys. 27, p. L209 (1988).Google Scholar
31. Cava, R. J., Batlogg, B., Dover, R. B. v., Krajewski, J. J., Waszczak, J. V., Fleming, R. M., Jr, W. F. P., Jr, L. W. R., Marsh, P., James, A. C. W. P. and Schneemeyer, L. F., Nature 345, p. 602 (1990).Google Scholar
32. Fischer, P., Karpinski, J., Kaldis, E., Jilek, E. and Rusiecki, S., Solid State Comm. 69, p. 531 (1989).Google Scholar
33. Er-Rakho, L., Michel, C., Lacorre, P. and Raveau, B., J. Solid State Chem. 73, p. 531 (1988).Google Scholar
34. Vaughey, J. T. and Poeppelmeier, K. R., in Chemistry of Electronic Ceramic Materials. edited by Davies, P.K. and Roth, R.S. (National Institute of Standards and Technology, Washington DC, 1991), p. 419.Google Scholar
35. Murayama, N., Sudo, E., Kani, K., Tsuzuki, A., Kawakami, S., Awano, M. and Torii, Y., Jpn. J. Appl. Phys. 27, p. L1623 (1988).Google Scholar
36. Greaves, C. and Slater, P. R., Physica C 161, p. 245 (1989).Google Scholar
37. Vybomov, M., Perthold, W., Michor, H., Holubar, T., Hilscher, G., Rogl, P., Fischer, P. and Divis, M., Phys. Rev. B 52, p. 1389 (1995).Google Scholar
38. Hellebrand, B., Wang, X. Z. and Steger, P. L., J. Solid State Chem. 110, p. 32 (1994).Google Scholar
39. Gormezano, A. and Weiler, M. T., J. Mater. Chem. 3, p. 771 (1993).Google Scholar
40. Gormezano, A. and Weiler, M. T., J. Mater. Chem. 3, p. 979 (1993).Google Scholar
41. Palacin, M. R., Fuertes, A., Casan-Pastor, N. and Gómez-Romero, P., Adv. Mater. 6, p. 54 (1994).Google Scholar
42. Palacin, M. R., Krumeich, F., Caldés, M. T. and Gómez-Romero, P., J. Solid State Chem. 117, p. 213 (1995).Google Scholar
43. Novikov, D. L., Freeman, A. J. and Poeppelmeier, K. R., Phys. Rev. B 53, p. 9448 (1996).Google Scholar
44. Zhu, W. J., Huang, Y. Z., Ning, T. S. and Zhao, Z. X., Mat. Res. Bull. 30, p. 243 (1995).Google Scholar
45. Pack, M. J., Gormezano, A. and Weiler, M. T., Personal Communication.Google Scholar
46. Gómez-Romero, P., Palacin, M. R. and Rodriguez-Carvajal, J., Chem. Mater. 6, p. 2118 (1994).Google Scholar
47. Shannon, R. D., Acta Cryst. A32, p. 751 (1976).Google Scholar
48. Mattheiss, L. F., Phys. Rev. B 45, p. 2442 (1992).Google Scholar