Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-08T20:29:23.107Z Has data issue: false hasContentIssue false

Layer-by-Layer Assembly of Nanotube-Polymer Thin Films with High Electrical Conductivity and Transparency

Published online by Cambridge University Press:  31 January 2011

Yong Tae Park
Affiliation:
[email protected], Texas A&M University, Mechanical Engineering, College Station, Texas, United States
Aaron Y. Ham
Affiliation:
[email protected], Texas A&M University, Mechanical Engineering, College Station, Texas, United States
Jaime C. Grunlan
Affiliation:
Get access

Abstract

Layer-by-layer (LbL) assembly was used to deposit transparent, highly conductive thin films using aqueous solutions of nanotubes stabilized by deoxycholate (DOC) and poly(diallyl-dimethylammonium chloride) (PDDA). Three different types of carbon nanotubes (CNTs) were used: (1) multi-walled carbon nanotubes (MWNTs), (2) a mixture of single, di- and tri-walled nanotubes (XM grade) and (3) purified HiPCO single-walled carbon nanotubes (SWNTs). SWNTs produced the most transparent (> 85 %T across visible spectrum) and electrically conductive (˜ 150 S/cm) 20-bilayer films with 42 nm thickness. Moreover, optoelectronic performance of SWNT-based thin films was improved with heat treatment due to the removal of PDDA. A 20-bilayer SWNT LbL film achieved a conductivity of 369 S/cm with a 5 min exposure to 400 °C. This study demonstrates the ability of the LbL technique to produce highly transparent and conductive nanotube-based thin films, which may be useful for a variety of large area electronics applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E. and Smalley, R. E., Science 273, 483 (1996).Google Scholar
2 Yu, M. F., Files, B. S., Arepalli, S. and Ruoff, R. S., Phys. Rev. Lett. 84, 5552 (2000).Google Scholar
3 Hu, J. T., Odom, T. W. and Lieber, C. M., Acc. Chem. Res. 32, 435 (1999).Google Scholar
4 Modi, A., Koratkar, N., Lass, E., Wei, B. Q. and Ajayan, P. M., Nature 424, 171 (2003).Google Scholar
5 Lowman, G. M. and Hammond, P. T., Small 1, 1070 (2005).Google Scholar
6 Friedman, R. S., McAlpine, M. C., Ricketts, D. S., Ham, D. and Lieber, C. M., Nature 434, 1085 (2005).Google Scholar
7 Sung, J., Jo, P. S., Shin, H., Huh, J., Min, B. G., Kim, D. H. and Park, C., Adv. Mater. 20, 1505 (2008).Google Scholar
8 Park, H. J., Oh, K. A., Park, M. and Lee, H., J. Phys. Chem. C 113, 13070 (2009).Google Scholar
9 Shim, B. S., Tang, Z. Y., Morabito, M. P., Agarwal, A., Hong, H. P. and Kotov, N. A., Chem. Mater. 19, 5467 (2007).Google Scholar
10 Williams, Q. L., Liu, X., Walters, W., Zhou, J. G., Edwards, T. Y. and Smith, F. L., Appl. Phys. Lett. 91, 143116 (2007).Google Scholar
11 Kaempgen, M., Duesberg, G. S. and Roth, S., Appl. Surf. Sci. 252, 425 (2005).Google Scholar
12 Green, A. A. and Hersam, M. C., Nano Lett. 8, 1417 (2008).Google Scholar
13 Yu, X., Rajamani, R., Stelson, K. A. and Cui, T., Surf. Coat. Tech. 202, 2002 (2008).Google Scholar
14 Zhang, D. H., Ryu, K., Liu, X. L., Polikarpov, E., Ly, J., Tompson, M. E. and Zhou, C. W., Nano Lett. 6, 1880 (2006).Google Scholar
15 Dan, B., Irvin, G. C. and Pasquali, M., ACS Nano 3, 835 (2009).Google Scholar
16 Geng, H. Z., Kim, K. K., So, K. P., Lee, Y.S., Chang, Y. and Lee, Y. H., J. Am. Chem. Soc. 129, 7758 (2007).Google Scholar
17 Cairns, D. R., Witte, R. P., Sparacin, D. K., Sachsman, S. M., Paine, D. C., Crawford, G. P. and Newton, R. R., Appl. Phys. Lett. 76, 1425 (2000).Google Scholar
18 Sun, J., Gerberich, W. W. and Francis, L. F., J. Polym. Sci. B 41, 1744 (2003).Google Scholar
19 Kirchmeyer, S. and Reuter, K., J. Mater. Chem. 15, 2077 (2005).Google Scholar
20 Bertrand, P., Jonas, A., Laschewsky, A. and Legras, R., Macromol. Rapid Commun. 21, 319 (2000).Google Scholar
21 Decher, G. and Schlenoff, J. B., Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials (Wiley-VCH, 2003).Google Scholar
22 Hammond, P. T., Adv. Mater. 16, 1271 (2004).Google Scholar