Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:29:17.239Z Has data issue: false hasContentIssue false

Layer by Layer Growth of GaN Films by Low Temperature Cyclic Process

Published online by Cambridge University Press:  21 March 2011

P. Sanguino
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
S. Koynov
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
M. Niehusl
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
L. V. Melo
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
R. Schwarz
Affiliation:
Departamento de Física, Instituto Superior Técnico, Lisboa, Portugal
H. Alves
Affiliation:
Justus-Liebig-University, Giessen, Germany
B. K. Meyer
Affiliation:
Justus-Liebig-University, Giessen, Germany
Get access

Abstract

Recently we have proposed a new layer-by-layer method for deposition of group-III nitrides from elemental precursors (Ga, N2). This technique is based on a two-step cyclic process, which alternates Pulsed Laser Deposition (PLD) and nitrogen plasma treatment. We have shown that such a process allows to control independently the structure and the N-content of the growing film. The objective of this work is to develop the cyclic process for achieving high quality GaN films. We explore the opportunities to grow stoichiometric epitaxial films on different substrates at relatively low temperatures (400°C to 600°C). This will gives us the possibility to use ZnO epitaxial layers as a buffer without thermal degradation. UV- Visible transmission spectra, X-ray diffraction scans and Atomic Force Microscopy are some of the tools used to characterise and compare the deposited films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Talyansky, V., Vispute, R. D., Sharma, R. P., Choopun, S., M.Downes, J., Venkatesan, T., Li, Y. X., Salamanca-Riba, L. G., Wood, M. C., Lareau, R. T., and Jones, K. A., Mat. Res. Soc. Symp. Proc., 468, 99104 (1997).Google Scholar
2. Xiao, R. F., Liao, H. B., Cue, N., Sun, X. W., Kwok, H. S., J. Appl. Phys. 80, (7)), 42264228 (1996).Google Scholar
3. Sun, X. W., Xiao, R. F., Kwok, H. S., J. Appl. Phys. 84,(10), 57765779 (1998).Google Scholar
4. Deiss, J. L., Hirlimann, Ch., Loison, J.L., Robino, M., Versini, G., Materials Science and Engineering B 82, 6870 (2001).Google Scholar
5. Willmott, P.R., Antoni, F., Appl. Phys. Lett. 73, (10)), 13941396 (1998).10.1063/1.121955Google Scholar
6. Mérel, P., Chaker, M., Pépin, H., and Tabbal, M., Mat. Res. Soc. Symp. Proc. Vol. 572, 401405 (1999).10.1557/PROC-572-401Google Scholar
7. Koynov, S., Sanguino, P., Niehus, M., Melo, L., Schwarz, R., to be published on Materials Science and Engineering B (2001).Google Scholar
8. Willmott, P. R. and Huber, J. R., Rev. Mod. Phys., 72, 315328 (2000).Google Scholar
9. Willmott, P.R., Antoni, F., and Döbeli, M., J. Appl. Phys. 88, (1)), 188195 (2000).Google Scholar
10. Yu, P. Y., Cardona, M., “Fundamentals of Semiconductors, Physics and Materials Properties”, ed. Springer (1996).10.1007/978-3-662-03313-5Google Scholar