Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:49:36.610Z Has data issue: false hasContentIssue false

Lattice site location of ultra-shallow implanted B in Si using ion beam analysis

Published online by Cambridge University Press:  21 March 2011

Hajime Kobayashi
Affiliation:
Sony Corporation, Technical Support Center, Yokohama, Japan
Ichiro Nomachi
Affiliation:
Sony Corporation, Technical Support Center, Yokohama, Japan
Susumu Kusanagi
Affiliation:
Sony Corporation, Technical Support Center, Yokohama, Japan
Fumitaka Nishiyama
Affiliation:
Hiroshima University, Department of Applied Physics and Chemistry, Higashi-Hiroshima, Japan
Get access

Abstract

We have investigated the lattice site location of B in Si using ion channeling in combination with nuclear reaction analysis (NRA). Silicon samples implanted with Boron at an energy of 10 keV and a dose of 5 × 1014 cm−2 (low dose samples) or 5 × 1015 cm−2 (high dose samples) were annealed at 1000 °C for 10 seconds (RTA) or at 800 °C for 10 minutes (FA). The activation efficiencies of these samples were estimated from the B atomic concentration and the hole concentration obtained by secondary ion mass spectrometry (SIMS) and spreading resistance profiling (SRP), respectively. We also studied the ion implantation damage of Si crystals using ion channeling combined with Rutherford backscattering spectrometry (RBS). We found that the activation efficiency is proportional to the substitutionality, meaning that substitutional B is fully activated without any carrier compensation. We also found that B atoms go to the substitutional sites and are activated up to the solubility limit in the high dose samples. However, the ion implantation damage of the crystalline Si in the high dose samples increases somewhat after annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pelaz, L., Venezia, V. C., Gossmann, H.-J., Gilmer, G. H., Fiory, A. T., Rafferty, C. S., Jaraiz, M. and Barbolla, J., Appl. Phys. Lett. 75, 662 (1999).Google Scholar
2. Nishida, A., Murakami, E. and Kimura, S., IEEE Trans. Electron Devices 45, 701 (1998).Google Scholar
3. Stolk, P. A. Gossmann, H-J, Eaglesham, D. J., Jacobson, D. C., Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Poate, J. M., Luftman, H. S. and Haynes, T. E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
4. Schroer, E., Privitera, V., Priolo, F., Napolitani, E. and Carnera, A., Appl. Phys. Lett. 74, 3996 (1999).Google Scholar
5. Stolk, P. A. Gossmann, H-J, Eaglesham, D. J., Jacobson, D. C., Luftman, H. S. and Poate, J. M., Mat. Res. Soc. Symp. Proc. Vol. 354, 307 (1995).Google Scholar
6. Eaglesham, D. J., Stolk, P. A., Grossmann, H.-J. and Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
7. Garben, B., Orr-Arienzo, W. A. and Lever, R. F., J. Electrochem. Soc. 133, 2152 (1986).Google Scholar
8. Feldman, L. C., Mayer, J. W. and Picraux, S. T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982)Google Scholar
9. Zhu, J., Rubia, T. D., Yang, L. H., Mailhiot, C. and Gilmer, G. H., Phys. Rev. B54, 4741 (1996).Google Scholar
10. Pelaz, L., Gilmer, G. H., Gossmann, H.-J., Rafferty, C. S., Jaraiz, M. and Barbolla, J., Appl. Phys. Lett. 74, 3657 (1999).Google Scholar
11. Liu, X.-Y., Windl, W. and Masquelier, M. P., Appl. Phys. Lett. 77, 2018 (2000).Google Scholar
12. Lenosky, T. J., Sadigh, B., Theiss, S. K., Caturla, M. J. and Rubia, T. D., Appl. Phys. Lett. 77, 1834 (2000).Google Scholar