Article contents
Lattice site location of ultra-shallow implanted B in Si using ion beam analysis
Published online by Cambridge University Press: 21 March 2011
Abstract
We have investigated the lattice site location of B in Si using ion channeling in combination with nuclear reaction analysis (NRA). Silicon samples implanted with Boron at an energy of 10 keV and a dose of 5 × 1014 cm−2 (low dose samples) or 5 × 1015 cm−2 (high dose samples) were annealed at 1000 °C for 10 seconds (RTA) or at 800 °C for 10 minutes (FA). The activation efficiencies of these samples were estimated from the B atomic concentration and the hole concentration obtained by secondary ion mass spectrometry (SIMS) and spreading resistance profiling (SRP), respectively. We also studied the ion implantation damage of Si crystals using ion channeling combined with Rutherford backscattering spectrometry (RBS). We found that the activation efficiency is proportional to the substitutionality, meaning that substitutional B is fully activated without any carrier compensation. We also found that B atoms go to the substitutional sites and are activated up to the solubility limit in the high dose samples. However, the ion implantation damage of the crystalline Si in the high dose samples increases somewhat after annealing.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001
References
REFERENCES
- 7
- Cited by