Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:34:34.522Z Has data issue: false hasContentIssue false

Lattice Location and Cathodoluminescence Studies of Ytterbium/Thulium Implanted 2H-Aluminium Nitride

Published online by Cambridge University Press:  11 February 2011

U. Vetter
Affiliation:
2. Physikalisches Institut, Universität Göttingen, Bunsenstr. 7–9, D-37073 Göttingen, Germany
M. F. Reid
Affiliation:
Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand
H. Hofsäss
Affiliation:
2. Physikalisches Institut, Universität Göttingen, Bunsenstr. 7–9, D-37073 Göttingen, Germany
C. Ronning
Affiliation:
2. Physikalisches Institut, Universität Göttingen, Bunsenstr. 7–9, D-37073 Göttingen, Germany
J. Zenneck
Affiliation:
2. Physikalisches Institut, Universität Göttingen, Bunsenstr. 7–9, D-37073 Göttingen, Germany
M. Dietrich
Affiliation:
ISOLDE Collaboration, CERN, 1211 Geneva 23, Switzerland
Get access

Abstract

Lattice location studies of radioactive 169Yb ions, implanted at an energy of 60 keV into 2H-AlN at the on-line isotope separator ISOLDE at CERN, were performed using the emission channeling technique. The measurements, which yield a substitutional Al lattice site for the implanted ions, were recorded for annealing temperatures ranging from 293 K to 1273 K. After complete decay of 169Yb to 169Tm cathodoluminescence measurements were performed in the range 12 K – 300 K. The samples show a strong visible luminescence at 460 - 470 nm at room temperature, which is attributed to the 1D2−3F4 intra-4f electron transition of Tm3+. At 12 K the luminescence is dominated by transitions starting from the 1H6 multiplet. Time resolved as well as temperature dependent cathodoluminescence measurements are presented and discussed.

The lattice location as well as the time resolved cathodoluminescence measurements suggest that there is only one pronounced site of the implanted ions in the AlN lattice and that this is the substitutional aluminium site.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilson, R. G. et al., Appl. Phys. Lett. 65, 992994 (1994).Google Scholar
2. Wu, X. et al., Appl. Phys. Lett. 70, 21262128 (1997).Google Scholar
3. Wu, X. et al., J. Luminescence 72–74, 284286 (1997).Google Scholar
4. Jadwisienczak, W. M. et al., J. Appl. Phys. 89, 43844390 (2001).Google Scholar
5. Hofsäss, H. and Lindner, G., Phys. Rep. 210, 121 (1991).Google Scholar
6. Weeks, T. W. Jr. et al., J. Mater. Res. 11, 1011 (1996).Google Scholar
7. Kugler, E., Hyperfine Interact. 129, 23 (2000).Google Scholar
8. Dalmer, M. et al., Mater. Res. Soc. Symp. Proc. 482, 1021 (1998).Google Scholar
9. Wahl, U. et al., J. Appl. Phys. 88, 13191324 (2000).Google Scholar
10. Ronning, C. et al., J. Appl. Phys. 87, 21492157 (2000).Google Scholar
11. Görller-Walrand, C. and Binnemans, K., in Handbook on the Physics and Chemistry of Rare Earths; Vol. 23, edited by Gschneidner, J. K. A. and Eyring, L. (Elsevier Science, B.V., 1996), p. 121.Google Scholar
12. Lakshman, S. V. J. and Jayasankar, C. K., J. Phys. C. 17, 29672980 (1984).Google Scholar
13. Chwalek, J. M. and Paz-Pujalt, G. R., Appl. Phys. Lett. 66, 410412 (1995).Google Scholar
14. Tanabe, S., Tamai, K., Hirao, K., and Soga, N., Phys. Rev. B. 53, 83588362 (1996).Google Scholar
15. Steckl, A. J., Garter, M., Lee, D. S., Heikenfeld, J., and Birkhahn, R., Appl. Phys. Lett. 75, 21842186 (1999).Google Scholar
16. Lozykowski, H. J., Jadwisienczak, W. M., and Brown, I., Appl. Phys. Lett. 743, 11291131 (1999).Google Scholar