Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:00:32.006Z Has data issue: false hasContentIssue false

Lattice density effect on the negative refractive index of a uniaxial metamaterial

Published online by Cambridge University Press:  15 March 2011

Claudio Amabile
Affiliation:
Laboratorio Nazionale Materiali e Dispositivi per la Microelettronica, Istituto Nazionale per la Fisica della Materia, Via Olivetti 2, I-20041 Agrate Brianza, Italy
Enrico Prati
Affiliation:
Laboratorio Nazionale Materiali e Dispositivi per la Microelettronica, Istituto Nazionale per la Fisica della Materia, Via Olivetti 2, I-20041 Agrate Brianza, Italy
Get access

Abstract

Negative refractive index materials tuned at n = -1 are believed to realize perfect lensing of real and evanescent modes. Metamaterials are the natural candidates to realize negative refractive index by the inversion of the effective dielectric permittiviy and magnetic permeability. The effect of the density on the tuning in the proximity of n = -1 is studied in order to find viable solutions to the issue of discretization of the lattice which correspondingly produces steps in the electromagnetic parameters of metamaterials. We study the microwave frequency negative refractive index of a metamaterial as a function of the density of the lattice period. The negative refractive index is realized by means of a waveguide filled with a split ring resonator lattice, exploited below the cut off frequency of the waveguide. We discuss the pass-band behaviour and the collective effects on the negative refractive index.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000)Google Scholar
2. Fang, N., Lee, H., Sun, C. and Zhang, X., Science, 308, 534 (2005)Google Scholar
3. Melville, O. S. and Blaikie, R. J., Opt. Express 13, 2127 (2005)Google Scholar
4. Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. and Hillenbr, R. and Science 313, 1595 (2006)Google Scholar
5. Guven, K. K and Ozbay, E., Opto-Electron. Rev. 14, 213 (2006)Google Scholar
6. Garcia-Garcia, J., Martæn, F., Baena, J. D., Marques, R., Jelinek, L., J. Appl. Phys. 98 033103 (2005)Google Scholar
7. Ozbay, E., Guven, K. and Aydin, K., J. Opt. A: Pure Appl. Opt. 9, S301–S307 (2007)Google Scholar
8. Varadan, V. V. et al., J. Appl. Phys. 100, 034910 (2006)Google Scholar
9. Powell, D. A. et al. Proceedings of “Metamaterials 2007”, Rome, Italy, October 2007.Google Scholar
10. Pendry, J. B. et al., IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)Google Scholar
11. Marques, R., Medina, F., Rafii-El-Idrissi, R., Phys. Rev. B65 144440 (2002)Google Scholar
12. Gorkunov, M. V. et al., Phys. Rev. E73 056605 (2006)Google Scholar
13. Hrabar, S. et al., IEEE Trans. Antennas. Propag. 53, 110 (2005)Google Scholar
14. Amabile, C., Prati, E., cond-mat arXiv: 1001.2976 (2010)Google Scholar