Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T06:59:01.286Z Has data issue: false hasContentIssue false

Lattice Defects in SrRuO3 Thin Films and Their Contribution to film Resistivity

Published online by Cambridge University Press:  10 February 2011

N. D. Zakharov
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
K. M. Satyalakshmi
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
G. Koren
Affiliation:
Technion - Israel Institute of Technology, Dept. of Physics, Haifa 3200, Israel
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
Get access

Abstract

Lattice defects present in PLD-grown, epitaxial SrRuO3 thin films on (001) SrTiO3 substrates are analyzed by high resolution transmission electron microscopy (HRTEM). Before the preparation of TEM samples, the electrical resistivity of films grown at different substrate temperatures was determined. Films grown at 775 °C exhibited a low electrical resistivity of only 200 μΩcm. They were found to be of orthorhombic structure and contained only few lattice defects. Films grown at 700 °C showed a high electrical resistivity of 1400 μΩcm. They were of cubic lattice symmetry, while films grown at temperatures above 800 °C showed resistivities between 300 and 900 μΩcm. The latter films mainly consist of an orthorhombic-cubic phase mix and involve lattice defects of high density, such as twins and antiphase boundaries (APBs). These defects are mainly located in between the islands and obviously contribute to the high film resistivity observed. For example, the APBs contain an extra single SrO layer, which is certainly insulating. Moreover, Ru vacancies are present in these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.M., Dover, R.B. van, Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., and Peck, W.F., Science 258, 1766 (1992).10.1126/science.258.5089.1766Google Scholar
2. Hiratani, M., Okazaki, C., Imagawa, K., and Takagi, K., Jpn.J. Appl.Phys. (Pt. 1) 35, 6212 (1996).10.1143/JJAP.35.6212Google Scholar
3. Gan, Q., Rao, R.A., and Eom, C.B., Appl.Phys.Lett. 70, 1962 (1997).10.1063/1.118792Google Scholar
4. Jiang, J.C., Pan, X.Q., and Chen, C.L., Appl.Phys.Lett. 72, 909 (1998).10.1063/1.120870Google Scholar
5. Jia, Q.X., Chu, F., Adams, C.D., Wu, X.D., Hawley, M., Cho, J.H., Findikoglu, A.T., Foltyn, S.R., Smith, J.L., and Mitchell, T.E., J. Mater.Res. 11 2263 (1996).10.1557/JMR.1996.0287Google Scholar
6. Jia, Q.X., Foltyn, S.R., Hawley, M., and Wu, X.D., J. Vac.Sci.Technol. A 15, 1080 (1997).10.1116/1.580433Google Scholar
7. Chen, C.L., Cao, Y., Huang, Z.J., Zhang, Z., Sun, Y.Y., Kang, W.N., Dezaneti, L.M., Chu, W.K., and Chu, C.W., Appl. Phys. Lett. 71, 1047 (1997).10.1063/1.119723Google Scholar
8. Jiang, J.C., Pan, X., and Chen, C.L., Mat.Res.Soc.Symp.Proc., Vol. 493, 195 (1998).10.1557/PROC-493-195Google Scholar
9. Maria, J.-P., Trolier-McKinstry, S., Schlom, D.G., Hawley, M.E., and Brown, G.W., J. Appl. Phys. 83, 4373 (1998).10.1063/1.367195Google Scholar
10. Lu, P., Chu, F., Jia, Q. X., and Mitchell, T. E., J. Mater. Res. 13 2302 (1998).10.1557/JMR.1998.0321Google Scholar
11. Jones, C.W., Battle, P.D., Lightfoot, P., and Harrison, T.A., Acta Cryst. C45, 365 (1989).Google Scholar
12. Bensch, W., Schmalle, H.W., and Reller, A., Solid State lonics 43, 171 (1990).10.1016/0167-2738(90)90481-6Google Scholar
13. Satyalakshmi, K.M., Zakharov, N.D., Hesse, D., and Koren, G., Mater.Res.Soc.Symp.Proc. (MRS Fall Meeting Boston 1998).Google Scholar