No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
This paper reports the influence of screw dislocations on the lateral/vertical growth behavior of chemical vapor deposited (CVD) on-axis homoepitaxial 4H-SiC films grown on patterned mesas. Electron channeling contrast imaging (ECCI) was utilized to image both atomic steps and dislocations while the film structure/orientation was determined using electron backscatter diffraction (EBSD). The presence and position of screw dislocations within the mesa impacted the resultant film thickness, lateral shape, and atomic step morphology. Mesa side walls that incline inwards due to faceting during screw-dislocation driven vertical film growth can intersect with the dislocation step sources near the side walls. If this occurs for all screw dislocations on a mesa, we observe a transition towards laterally dominated growth that produces webbed structures and films surfaces exhibiting significantly lower step densities. Transition from vertical to lateral dominated growth is consistent with ECCI imaged dislocation very near a mesa side wall.