Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:46:12.086Z Has data issue: false hasContentIssue false

Lateral Silicide Growth

Published online by Cambridge University Press:  22 February 2011

L. R. Zheng
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853
E. Zingu
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853
J. W. Mayer
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853
Get access

Abstract

Silicide formation and growth kinetics have been investigated with lateral diffusion couples formed by deposition of Ni and Cr layers on patterned Si substrates and by deposition of Ni patterns on Si films. For annealing temperatures between 520 and 650°C the growth of CrSi2follows a (time)½ dependence with an activation energy of 1.4± 0.1 eV. In Ni-silicide formation at temperatures below 600°C, Ni was the predominant moving species. As the temperature increased, the motion of Si became significant. The apparent activation energy for silicide formation varied from Ea ≅ 1.4 eV for Ni motion at relatively low temperatures to Ea≅ 2.3 eV for Si motion that occurs at high temperatures. Lateral diffusion in device geometry structures resulted in degradation of contact planarity due to the penetration of metal silicides in Ni-Si structures or the erosion of silicon in Cr-Si structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tu, K. N. and Mayer, J. W., in Thin Films, Interdiffusion and R eactions, Poate, J. M., Tu, K. N. and Mayer, J. W., eds. (J. Wiley, New York,(1978), pp. 359405.Google Scholar
2. Ottaviani, G. and Mayer, J. W., in Reliability and Degradation, Howes, M. J. and Morgan, D. V., eds. (J. Wiley, New York, 1981), pp. 105149.Google Scholar
3. Murarka, S. P., J. Vac. Sci. Technol. 17, 775 (1980).CrossRefGoogle Scholar
4. Bower, R. W. and Mayer, J. W., Appl. Phys. Lett., 20, 359 (1972).CrossRefGoogle Scholar
5. Revesz, P., Gyimesi, J., Pogany, L. and Peto, G., J. Appl. Phys. 54, 2114 (1983).Google Scholar
6. Zheng, L. R., Hung, L. S., Mayer, J. W., Majni, G. and Ottaviani, G., Appl. Phys. Lett., 41, 646 (1982).Google Scholar
7. Okabayashi, H., Nagasawa, E. and Morimoti, M., 1982 IEDM, p. 556.Google Scholar
8. Zheng, L. R., Hung, L. S. and Mayer, J. W., Thin Solid Films, 104, 207 (1983).Google Scholar
9. Zheng, L. R., Hung, L. S. and Mayer, J. W., J. Vac. Sci. Technol., 20, 758 (1983).Google Scholar
10. Olowolafe, J. O., Nicolet, M.-A., and Mayer, J. W., J. Appl. Phys. 47, 5182 (1976).Google Scholar
11. Chu, W. K., Lau, S. S., Mayer, J. W. and Muller, H., Thin Solid Films, 25, 393 (1975).Google Scholar
12. Pretorius, R., Strydom, W., Comrie, C. and Mayer, J. W., Phys. Rev. B22, 1885 (1980).Google Scholar
13. Foll, H. and Ho, P. S., J. Appl. Phys. 52, 5511 (1981).Google Scholar
14. Gösele, V., Tu, K. N. and Thompson, R. D., J. Appl. Phys. 53, 8759 (1982).CrossRefGoogle Scholar
15. Ottaviani, G., J. Vac. Sci. Technol., 16, 1112 (1979).Google Scholar
16. Pretorius, R., private communication.Google Scholar