Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T02:26:52.645Z Has data issue: false hasContentIssue false

Lateral migration and segregation of vesicles with viscosity contrast in simple shear and Poiseuille flows

Published online by Cambridge University Press:  15 March 2011

Gwennou Coupier
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier (Grenoble I) and CNRS, 140 Rue de la Physique, F138402 St Martin d'Hères Cedex, France
Natacha Callens
Affiliation:
Microgravity Research Center, Université Libre de Bruxelles, 50 Av. F. Roosevelt, CP 165/62, B11050 Brussels, Belgium
Badr Kaoui
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier (Grenoble I) and CNRS, 140 Rue de la Physique, F138402 St Martin d'Hères Cedex, France Université Hassan II 1 Mohammedia, Faculté des Sciences Ben M'Sik, Laboratoire de Physique de la Matière Condensée, BP 7955 Casablanca, Morocco
Christophe Minetti
Affiliation:
Microgravity Research Center, Université Libre de Bruxelles, 50 Av. F. Roosevelt, CP 165/62, B11050 Brussels, Belgium
Frank Dubois
Affiliation:
Microgravity Research Center, Université Libre de Bruxelles, 50 Av. F. Roosevelt, CP 165/62, B11050 Brussels, Belgium
Chaouqi Misbah
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier (Grenoble I) and CNRS, 140 Rue de la Physique, F138402 St Martin d'Hères Cedex, France
Thomas Podgorski
Affiliation:
Laboratoire de Spectrométrie Physique, Université Joseph Fourier (Grenoble I) and CNRS, 140 Rue de la Physique, F138402 St Martin d'Hères Cedex, France
Get access

Abstract

Lateral migration of vesicles (closed lipidic membranes) in a flow is characterized as a function of the relevant flow parameters and mechanical properties of the vesicles. We consider low Reynolds number flows, and migration is only due to viscous effects. Through experiments and simulations, we exhibit two different origins for such cross streamline migration: the presence of a wall, and a non1constant shear rate, as for instance in a Poiseuille flow. Such migration modifies the distribution of vesicles in a sheared polydisperse suspension; we present preliminary results proving that the hydrodynamic interactions between vesicles greatly modify the distribution of vesicles according to their sizes and deflation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fung, Y. C., Biomechanics; mechanical properties of living tissues, (Springer, Berlin, 1993).Google Scholar
2. Vitkova, V., Mader, M.-A., Polack, B., Misbah, C. and Podgorski, T., Biophys. J. 95, 33 (2008).Google Scholar
3. Keller, J. R. and 3. Skalak, R., J. Fluid Mech 120, 27 (1982).Google Scholar
4. Beaucourt, J., Rioual, F., Séon, T., Biben, T. and Misbah, C., Phys. Rev. E 69, 011906 (2004).Google Scholar
5. Mader, M.-A., Vitkova, V., Abkarian, M., Viallat, A. and Podgorski, T., Eur. Phys. J. E 19, 389 (2006).Google Scholar
6. Kantsler, V. and Steinberg, V., Phys. Rev. E 96, 036001 (2006).Google Scholar
7. Misbah, C., Phys. Rev. Lett. 96, 028104 (2006).Google Scholar
8. Vlahovska, P. M. and Gracia, R. Serral, Phys. Rev. E 75, 016313 (2007).Google Scholar
9. Noguchi, H. and Gompper, G., Phys. Rev. Lett. 98, 128103 (2007).Google Scholar
10. Angelova, M.I., Soleau, S., Meleard, P., Faucon, J. F. and Bothorel, P., Progr. Colloid. Polym. Sci, 89, 127 (1992).Google Scholar
11. Coupier, G., Kaoui, B., Podgorski, T. and Misbah, C., Phys. Fluids 20, 111702 (2008).Google Scholar
12. Callens, N., Minetti, C., Coupier, G., Mader, M.-A., Dubois, F., Misbah, C. and Podgorski, T., Europhys. Lett. 83, 24002 (2008).Google Scholar
13. Dubois, F., Callens, N., Yourassowsky, C., Hoyos, M., Kurowski, P. and Monnom, O., Appl. Opt. 45, 864 (2006).Google Scholar
14. Cantat, I. and Misbah, C., Phys. Rev. Lett. 83, 880 (1999).Google Scholar
15. Olla, P., J. Phys. II 7, 1533 (1997).Google Scholar
16. Sukumaran, S. and Seifert, U., Phys. Rev. E 64, 011916 (2001).Google Scholar
17. Kaoui, B., Ristow, G., Cantat, I., Misbah, C. and Zimmermann, W., Phys. Rev. E 77, 021903 (2008).Google Scholar
18. Kantsler, V., Segre, E. and Steinberg, V., Europhys. Lett. 82, 58005 (2008).Google Scholar
19. Lac, E., Morel, A. and Barthès-Biesel, D., J. Fluid Mech. 573, 149 (2007).Google Scholar