Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T01:01:21.922Z Has data issue: false hasContentIssue false

Lateral Growth of InN on GaN/Sapphire

Published online by Cambridge University Press:  21 March 2011

Fuh-Hsiang Yang
Affiliation:
Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan
Jih-Hsien Hwang
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
Kuei-Hsien Chen
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
Ying-Jay Yang
Affiliation:
Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan
Get access

Abstract

The lateral growth of high quality InN on the stripe-pattern GaN/sapphire substrate with an OMVPE system was studied. The surface morphology and structural properties were investigated. Epitaxial films were achieved due to the greatly reduced strain by lateral growth. Two kinds of growth mode were observed due to different growth conditions of V/III ratios. X-ray rocking curve with FWHM of 700 arcsec shows the good quality of the film and E2 mode of Raman spectrum with FWHM of 3.5 cm-1 is among the best results ever reported in the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referneces

[1] Transley, T. L., Foley, C. P., J. Appl. Phys. 59 (1986) 3241.Google Scholar
[2] Matthias, E. N., Allen, B. M., IEEE Transactions on electron devices, ED–34 (1987) 257.Google Scholar
[3] Foutz, B. E., O'Leary, S. K., Shur, M. S., Eastman, L. F., J. Appl. Phys. 85, 7727 (1999).Google Scholar
[4] Wakahara, A., Tsuchiya, T., Yoshida, A., J. Crystal Growth 99 (1990) 385.Google Scholar
[5] Sato, M., Jpn. J. Appl. Phys. 36 (1997) 595.Google Scholar
[6] Guo, Q., Nishio, M., Ogawa, H., Yoshida, A., Jpn. J. Appl. Phys. 38 (1999) L490.Google Scholar
[7] Yamamoto, A., Yamauchi, Y., Ohkubo, M., Hashimoto, A., J. Crystal Growth 174 (1997) 641.Google Scholar
[8] Yamaguchi, S., Kariya, M., Nitta, S., Takeuchi, T., Wetzel, C., Amano, H., Akasaki, I., J. Appl. Phys. 85 (1999) 7682.Google Scholar
[9] Pan, Y.C., Lee, W.H., Shu, C.K., Lin, H.C., Chiang, C.I., Chang, H., Lin, S.D., Lee, M.C., Chen, W.K., J. Appl. Phys. 38 (1999) 645.Google Scholar
[10] Yamamoto, A., Tsujino, M., Ohkubo, M., Hashimoto, A., J. of Crystal Growth 137 (1994) 415.Google Scholar
[11] Aleksandrov, S. E., Zykov, V. A., Gavrikova, T. A., Krasovitskii, D. M., Semiconductors 32 (1998) 412.Google Scholar
[12] Abernathy, C. R., Pearton, S. J., Ren, F., Wisk, P. W., J. Vac. Sci. Technol. B11 (1993) 179.Google Scholar
[13] Kistenmacher, T. J., Ecellberger, S. A., Bryden, W. A., J. Appl. Phys. 74 (1993) 1684.Google Scholar
[14] Igaracshi, O., Jpn. J. Appl. Phys. 31 (1992) 2665.Google Scholar
[15] Kung, P., Walker, D., Hamilton, M., Diaz, J., Razeghi, M., Appl. Phys. Lett. 74(1999) 570.Google Scholar
[16] Dyck, J. S., Kim, K., Limpijumnong, S., Lambrecht, W.R.L., Kash, K., Angus, J.C., Solid State Commun. 114 (2000) 335.Google Scholar