Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T06:56:15.506Z Has data issue: false hasContentIssue false

Lateral Diffusion Limitations of Ingaas/Gaas for Nanostructure Fabrication

Published online by Cambridge University Press:  15 February 2011

Gregory F. Redinbo
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
Harold G. Craighead
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
Get access

Abstract

We have investigated the technique of implantation enhanced interdiffusion (IEI) for optical nanostructure fabrication in strained InxGal-xAs/GaAs quantum wells. Implantation masks with widths from 40 nm to 40 μm were fabricated on the surface of InxGal-xAs/GaAs (x+0.1, 0.2) 3.5 nm quantum well material which was implanted with 100 kV As+ with doses ranging from 5 × 1012 to 8.5× 1013 ions/cm2. After mask removal and a high temperature anneal, cathodoluminescence (CL) spectroscopy was used to investigate the optical properties of the resulting structures. We have measured electron-heavy hole recombination energy shifts due to quantum well interdiffusion of up to 60 meV for the highest doses used here with broad area implants. However, while quantum well emission under large (40 μm) masks is preserved, smaller masks show an emission blue shift not due to ions penetrating through the mask. A simple model of the width dependence of this shift yields an enhanced lateral diffusion length of approximately 1 μm which is many times larger than the lateral straggle of the implanted As+. We conclude that lateral diffusion effects may impose a limit on nanostructure fabrication in the InxGal-xAs/GaAs system with this technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schweizer, H., Lehr, G., Prins, F., Mayer, G., Lach, E., Kruger, R., Frohlich, E., Pilkuhn, M. H. and Smith, G. W., Superlattices and Microstructures 12, 419 (1992).Google Scholar
2. Clausen, E. M. Jr., Kapon, E., Tamargo, M. C. and Hwang, D. M., Appl. Phys. Lett. 56, 776 (1990).Google Scholar
3. Cibert, J., Petroff, P. M., Dolan, G. J., Pearton, S. J., Gossard, A. C. and English, J. H., Appl. Phys. Lett. 49, 1275 (1986).Google Scholar
4. Leier, H., Forchel, A., Maile, B. E., Mayer, G., Hommel, J., Weimann, G. and Schlapp, W., Appl. Phys. Lett. 56,48 (1990).Google Scholar
5. Allard, L. B., Aers, G. C., Charbonneau, S., Jackman, T. E., Williams, R. L., Templeton, I. M., Buchanan, M., Stevanovic, D. and Almeida, F. J. D., J. Appl. Phys. 72, 422 (1992).Google Scholar
6. Allard, L. B., Aers, G. C., Piva, P. G., Poole, P. J., Buchanan, M., Templeton, I. M., Jackman, T. E., Charbonneau, S, Akano, U. and Mitchell, I. V., Appl. Phys. Lett. 64, 2412 (1994).Google Scholar
7. Ziegler, J. F., Transport of Ions in Matter, IBM Research, Yorktown Heights, NY.Google Scholar
8. Bradley, I. V., Gillin, W. P., Homewood, K. P., and Webb, R. P., J. Appl. Phys. 73, 1686 (1993).Google Scholar
9. Schlesinger, T. E. and Kuech, T., Appl. Phys. Lett 49, 519 (1986).Google Scholar
10. Nickel, H., Losch, R., Schlapp, W., Leier, H. and Forchel, A., Surface Science 228, 340 (1990)Google Scholar
11. Offsey, S. D., PhD thesis, Cornell University, 1991.Google Scholar