Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:07:45.007Z Has data issue: false hasContentIssue false

Lateral Coupling of Self-Assembled Quantum Dots Studied by Near-Field Spectroscopy

Published online by Cambridge University Press:  10 February 2011

H.D. Robinson
Affiliation:
Dept. of Physics, Boston University, Boston, MA 02215
B.B. Goldberg
Affiliation:
Dept. of Physics, Boston University, Boston, MA 02215
J.L. Merz
Affiliation:
Dept. of Electrical Engineering, Notre Dame University, South Bend, IN
Get access

Abstract

Lateral coupling between separate quantum dots has been observed in a system of In0.55A10.45As self-assembled quantum dots. The experiment was performed by taking photoluminescence excitation (PLE) spectra in the optical near-field at 4.2 K. The high spatial resolution afforded by the near-field technique allows us to resolve individual dots in a density regime where interactions between neighboring dots become apparent. In the PLE spectra, narrow resonances are observed in the emission lines of individual dots. A large fraction of these resonances occur simultaneously in several emission lines, originating from different quantum dots. This is evidence of interdot scattering of carriers, which additional data show to be mediated by localized states at energies below the wetting layer exciton energy. A very rich phonon spectrum generated by the complicated interfaces between barrier and dot material is also evident in the data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goldstein, L., Glas, F., Marzin, J.Y., Charasse, M. N., and Roux, G. Le, Appl. Phys. Lett. 47, 1099 (1985).10.1063/1.96342Google Scholar
2. Petroff, P. M. and Denbaars, S. P., Superlatt. Microstruct. 15, 15 (1994).10.1006/spmi.1994.1004Google Scholar
3. Moison, J. M., Houzay, F., Leprince, L., André, E, and Vatel, O, Appl. Phys. Lett. 64, 196 (1994).10.1063/1.111502Google Scholar
4. Marzin, J.Y., Gérard, J.M., Isradl, A., Barrier, D and Bastard, G., Phys. Rev. Lett. 73, 716 (1994).10.1103/PhysRevLett.73.716Google Scholar
5. Grundmann, M., Ledentsov, N. N., Heitz, R., Eckey, L., Böhrer, J., Bimberg, D., Ruminov, S. S., Werner, P., Richter, U., Heydenreich, J., Ustinov, V. M., Egorov, A. Y., Zhukov, A. E., Kop'ev, P. S., and Alferov, Zh. I., Phys. Status Solidi B 188, 249 (1995).10.1002/pssb.2221880122Google Scholar
6. Paesler, M. A. and Moyer, P. J., Near-Field Optics: Instrumentation & Applications (John Wiley & Sons, New York, 1996)Google Scholar
7. Huffaker, D. L., Graham, L. A., and Deppe, D. G., Appl Phys. Lett. 72, 214 (1998).10.1063/1.120689Google Scholar
8. Polimeni, A., Patané, A., Henini, M., Eaves, L., and Main, P. C., Phys. Rev B 59, 5064 (1999).10.1103/PhysRevB.59.5064Google Scholar
9. Fafard, S., Leon, R., Merz, J. L., and Petroff, P. M., Phys. Rev. B 52, 5752 (1995).Google Scholar
10. Leon, R., Fafard, S., Leonard, D., Merz, J. L., and Petroff, P. M., Science 267, 1966 (1995).10.1126/science.267.5206.1966Google Scholar
11. Leon, R., Fafard, S., Leonard, D., Merz, J. L., and Petroff, P. M., Appl. Phys. Lett. 67, 521 (1995).10.1063/1.115175Google Scholar
12. Wang, P. D., Merz, J. L, Fafard, S., Leon, R., Leonard, D., Medeiros-Ribeiro, G., Oestrich, M., Petroff, P. M., Uchida, K., Miura, N., Akiyama, H., and Sakaki, H., Phys. Rev. B 53, 16458 (1995).10.1103/PhysRevB.53.16458Google Scholar
13. Robinson, H. D., Muiller, M. G., Goldberg, B. B., and Merz, J. L., Appl. Phys. Lett 72, 2081 (1998).10.1063/1.121282Google Scholar
14. Heitz, R., Ramachandran, T. R., Kalburge, A., Xie, Q., Mukhametzanov, I., P. Chen, and Madhukar, A., Phys. Rev. Lett. 21, 4071 (1997).10.1103/PhysRevLett.78.4071Google Scholar
15. Robinson, H. D., Goldberg, B. B., and Merz, J. L., submitted for publication.Google Scholar