Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T13:29:19.110Z Has data issue: false hasContentIssue false

Laser-Pulsed Plasma Chemistry: Surface Oxidation of Niobium

Published online by Cambridge University Press:  15 February 2011

R.F. Marks
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
R.A. Pollak
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Ph. Avouris
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

Laser irradiation of a solid surface under an oxidizing ambient gas can activate localized, heterogeneous chemical reactions which modify the surface. Under suitable conditions, the laser initiates a reactive plasma near the gas/solid interface. This plasma mechanism is proposed as the basis for a new surface chemical technique which we denote laser-pulsed plasma chemistry (LPPC). LPPC experiments on niobium metal under one atmosphere of oxygen employed a pulsed CO2 laser and displayed single-pulse, self-limiting, oxide growth. Product oxide thickness increased with optical intensity. Surface layer thickness and chemical composition were determined for oxide layers between 1 nm and 5 nm thick using x-ray photoelectron spectroscopy (XPS or ESCA). Composition of these niobium oxide (Nb2O5−δ) surfaces was similar to the composition produced by RF plasma oxidation, but the valence defect, δ, for LPPC oxides was approximately two to five times lower. At high laser intensity (≥4 × 106 W/cm2), direct optical heating or plasma-mediated thermal coupling to the solid activates interdiffusion at the oxide/metal interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Marks, R.F., Pollak, R.A., Avouris, Ph., Lin, C.T., and Théfaine, Y.J., to be published in J. Chem. Phys.Google Scholar
2 Marks, R.F., Pollak, R.A., unpublishedGoogle Scholar
3 Fehlner, F.P., Mott, N.F., Oxidation 1, 59 (1970).Google Scholar
4 Miles, J.L., Smith, P.H., J. Electrochem. Soc. 110, 1240 (1963)Google Scholar
5 Fromhold, A.T. Jr., Baker, J.M., J. Appl. Phys. 51, 6377 (1980).Google Scholar
6 Pollak, R.A., Stoltz, H.J., Raider, S.I., and Marks, R.F., unpublished.Google Scholar
7 McKay, J.A., Schriempf, J.T., IEEE J. of Quant. Electronics QE–17, 10, 2008 (1981), and refs. therein.Google Scholar
8 Smith, D.C., J. Appl. Phys. 48, 2217 (1977).Google Scholar
9 Weyl, G., Pirri, A., Root, R., AIAA J., 19, 460 (1981)Google Scholar
10 Metev, S.M., Savtchenko, S.K., Stamenov, K.V., J. Phys. D: Appl. Phys. 13, L75 (1980).Google Scholar
11 Metev, S.M., Savtchenko, S.K., Stamenov, K.V., Veiko, V.P., Kotov, G.A., Shandibina, G.D., IEEE J. Quantum Electronics QE-17, 2004 (1981).Google Scholar
12 Liu, Yung S., Chiang, S.W., F. Bacon, Appl. Phys. Lett. 38, 1005 (1981).Google Scholar
13 Matsuura, M., Ishida, M., Suzuki, A., Hara, K., Japanese J. of Appl. Phys. 20, L726 (1981).Google Scholar
14 Lin, C.T., Avouris, Ph., Théfaine, Y.J., Marks, R.F., Pollak, R.A., unpublished.Google Scholar
15 Avouris, Ph., Chan, I.Y., Loy, M.M.T., J. Chem. Phys. 70, 5315 (1979).Google Scholar
16 Simon, D., Perrin, C., Baillif, P., Acad, C.R.. Sci. Paris C241, 283 (1976).Google Scholar
17 Wadsley, A.D., Andersson, Sten, in Perspectives in Structural Chemistry, Vol. 3, eds. Dunitz, J.D., Dunitz, J.D., Ibers, J.A., J. Wiley and Sons, 1970, p. 1.Google Scholar
18 Alyamovskii, S.I., Shveikin, G.P., Gel'd, P.V., Russian J. of Inorg. Chem. 12, 915 (1967).Google Scholar
19 Emmenegger, F.P., Robinson, M.L. A., J. Phys. Chem. Solids 29, 1673 (1968).CrossRefGoogle Scholar
20 Weaver, J.H., Lynch, D.W., Olson, C.G., Phys. Rev B7, 4311 (1973).Google Scholar
21 Graven, W.M., Salomon, R.E., Adams, G.B., J. Chem. Phys. 33, 954 (1960)Google Scholar
22 Graven, W.M., J. Chem. Phys. 35, 1526 (1961)Google Scholar
23 O'Hanlon, J.F., J. Vac. Sci. and Tech. 7, 330 (1969).Google Scholar