Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T14:58:09.470Z Has data issue: false hasContentIssue false

Laser-Induced Photodeposition of Fe Films From Iron Carbonyl

Published online by Cambridge University Press:  21 February 2011

P. J. Love
Affiliation:
Michelson Laboratory, Research DepartmentNaval Weapons Center, China Lake, California 93555
R. T. Loda
Affiliation:
Michelson Laboratory, Research DepartmentNaval Weapons Center, China Lake, California 93555
P. R. La Roe
Affiliation:
Michelson Laboratory, Research DepartmentNaval Weapons Center, China Lake, California 93555
A. K. Green
Affiliation:
Michelson Laboratory, Research DepartmentNaval Weapons Center, China Lake, California 93555
Victor Rehn
Affiliation:
Michelson Laboratory, Research DepartmentNaval Weapons Center, China Lake, California 93555
Get access

Abstract

Excimer laser photodecomposition of Fe(CO)5 has been used to produce large-area (≳ 1 cm2) Fe films on insulating and semiconducting substrates. Films were deposited in an ultrahigh vacuum system at room temperature or 77 K. Film composition and morphology were examined with Auger-depth profiling, scanning electron microscopy, x-ray fluorescence, and resistivity measurements. At appropriate laser power densities and Fe(CO)5 pressures, adherent metallic films were obtained. These films were typically less than 500 Å thick and contained less than 13% bulk oxygen and carbon contamination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ehrlich, D.J., Osgood, R.M. Jr., and Deutsch, T.F., J. Vac. Sci. Technol. 21, 23 (1982).Google Scholar
2. Deutsch, T.F., Ehrlich, D.J., Osgood, R.M. Jr., and Liau, Z.L., Appl. Phys. Lett. 36, 847 (1980).Google Scholar
3. Deutsch, T.F., Ehrlich, D.J., and Osgood, R.M. Jr., Appl. Phys. Lett. 35, 175 (1979).Google Scholar
4. Solanki, R., Boyer, P.K., and Collins, G.J., Appl. Phys. Lett. 41, 1048 (1982).Google Scholar
5. Solanki, R., Boyer, P.K., Mahan, J.E., and Collins, G.J., Appl. Phys. Lett. 38, 572 (1981).Google Scholar
6. Boyer, P.K., Moore, C.A., Solanki, R., Ritchie, W.K., Roche, G.A., and Collins, G.J., Mat. Res. Soc. Symp. Proc. 17, 119127 (1983).Google Scholar
7. Wood, T.H., White, J.C., and Thacker, B.A., Appl. Phys. Lett. 42, 408 (1983).Google Scholar
8. George, P.M. and Beauchamp, J.L., Thin Solid Films 67, L25 (1980).Google Scholar
9. Calloway, A.R., Galantowicz, T.A., and Fenner, W.R., J. Vac. Sci. Technol. A1, 534 (1983).Google Scholar
10. Bottka, N., Walsh, P.J., and Dalbey, R.Z., J. Appl. Phys. 54, 1104 (1983).Google Scholar
11. Davis, L.E., MacDonald, N.C., Palmberg, P.W., Riach, G.E., and Weber, R.E. in: Handbook of Auger Electron Spectroscopy (Physical Electronics Industries, Inc. 1976) pp. 1115.Google Scholar
12. Krasinski, J., Bauer, S.H., and Kompa, K.L., Optics Commun. 35, 363 (1980).Google Scholar
13. Duncan, M.A., Dietz, T.G., and Smalley, R.E., Chem. Phys. 44, 415 (1979).Google Scholar
14. Wissmann, P.P. in: Springer Tracts in Modern Physics, Vol. 77, Holer, G., ed. (Springer-Verlag, Berlin 1975), pp. 196.Google Scholar
15. Kaplan, R., J. Vac. Sci. Technol. A1, 551 (1983).Google Scholar
16. Kaplan, R. and Bottka, N., Appl. Phys. Lett. 41, 972 (1982).Google Scholar
17. Carver, G.E. and Seraphin, B.O., Appl. Phys. Lett. 34, 279 (1979).Google Scholar