Published online by Cambridge University Press: 25 February 2011
Laser-induced thermochemical reactions have been investigated for GaAs in a CCl2F2 gas ambient using an argon-ion laser. The chemical compositions of the reaction products deposited on the etched groove were measured by Auger electron spectroscopy (AES). The conditions of laser power, scan speed, and CC12F2 gas pressure under which the etching reaction occurs without deposition of the residue were clarified. High etching rates up to 267 μm/s and an aspect ratio of 4.5 have been achieved by a single scan of a laser beam. Microprobe photoluminescence and Raman scattering measurement were carried out on the etched surface to characterize damage induced by this processing.