Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:36:45.360Z Has data issue: false hasContentIssue false

Laser-Assisted Atom Probe Analysis of Bulk Insulating Ceramics

Published online by Cambridge University Press:  31 January 2011

Tadakatsu Ohkubo
Affiliation:
[email protected], National Institute for Materials Science, Magnetic Materials Center, Tsukuba, Japan
Yimeng M. Chen
Affiliation:
[email protected], University of Tsukuba, Graduate School of Pure and Applied Sciences, Tsukuba, Japan
Masaya Kodzuka
Affiliation:
[email protected], University of Tsukuba, Graduate School of Pure and Applied Sciences, Tsukuba, Japan
Fang Li
Affiliation:
[email protected], National Institute for Materials Science, Magnetic Materials Center, Tsukuba, Japan
Keiichiro Oh-ishi
Affiliation:
[email protected], National Institute for Materials Science, Magnetic Materials Center, Tsukuba, Japan
Kazuhiro Hono
Affiliation:
[email protected], National Institute for Materials Science, Magnetic Materials Center, Tsukuba, Japan
Get access

Abstract

A Yb:KGW femtosecond laser (400 fs) with 3rd and 4th harmonic generators (wavelength = 343 and 258 nm) was adopted to a locally built 3DAP instrument to assist field evaporation from ceramics tips that were bonded on tungsten wire. Using this setting, we have demonstrated that quantitative atom probe tomography is possible from Y2O3-ZrO2-MgAl2O4, (Ce,Y)O2, Li(Co,Ni,Mg,Al)O2 sintered bulk ceramics, which are all insulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lauhon, L.J. Adusumilli, P. Ronsheim, P. Flaitz, P.L. and Lawrence, D. MRS Bulletin, 34, 738 (2009).Google Scholar
2 Deconihout, B. Vurpillot, F. Gault, B. Costa, G. Da, Bouet, M. Bostel, A., Blavette, D., Hideur, A., Martel, G. and Brunel, M., Surf. Interface Anal., 39, 278 (2007).Google Scholar
3 Gault, B. Vurpillot, F. Bostel, A. Menand, A. and Deconihout, B. Appl. Phys. Lett. 86, 094101 (2005).Google Scholar
4 Kelly, T. F. Larson, D. J. Thompson, K. Alvis, R. L. Bunton, J. H., Olsonton, J. D., and Gorman, B. P., Annu. Rev. Mater. Res. rman 37, 681 (2007).Google Scholar
5 Pinitsoontorn, S. Cerezo, A. Petford-Long, A. K., Mauri, D. Folks, L. and Carey, M. J. Appl. Phys. Lett. 93, 071901 (2008)Google Scholar
6 Pinitsoontorn, S. Cerezo, A. Petford-Long, A. K., Mauri, D. Folks, L. and Carey, M. J. Appl. ng Phys. Lett. 93, 071901 (2008)Google Scholar
7 Thompson, K. Lawrence, D. J. Larson, D. J. Olson, J. D. Kelly, T. F. and Gorman, B. P. Ultramicroscopy 107, 131 (2007).Google Scholar
8 Larson, D. J. Petford-Long, A. K., Ma, Y. Q. Cerezo, A. Acta Mater. 52, 2847 (2004).Google Scholar
9 Chiaramonti, A. N. Schreiber, D. K. Egelhoff, W. F. Seidman, D. N. and Petford-Long, A. K., Appl. Phys. Lett. 93, 103113 (2008).Google Scholar
10 Kuduz, M. Schmitz, G. and Kirchheim, R., Ultramicroscopy, 101, 197 (2004).Google Scholar
11 Oberdorfer, C. Stender, P. Reinke, C. and Schmitz, G. Microsc. Microanal. 13, 342 (2007).Google Scholar
12 Yoon, K. E. Seidman, D. N. Antonie, C. and Bauer, P. Appl. Phys. Lett. 93, 132502 (2008).Google Scholar
13 Kellogg, G. L. J. Appl. Phys., 53, 6383 (1982).Google Scholar
14 Larson, D. J. Alvis, R. L. Lawrence, D. F. Prosa, T. J. Ulfig, R. M. Reinhard, D. A. Clifton, P. H. Gerstl, S. S. A. Bunton, J. H. Lenz, D. R. Kelly, T. F. and Stiller, K. Microsc. Microanal. 14 (Suppl 2), 1254 (2008).Google Scholar
15 Chen, Y. M. Ohkubo, T. Kodzuka, M. Morita, K. and Hono, K. Scripta Mater. 61, 693, (2009).Google Scholar
16 Kodzuka, M. Ohkubo, T., Hono, K. Matsukura, F. and Ohno, H. Ultramicroscopy, 109, 644 (2009).Google Scholar
17 Muth, J. F. Kolbas, R. M. Sharma, A. K. Oktyabrsky, S. and Narayan, J. J. Appl. Phys. 85, 7884 (1999)Google Scholar