Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T00:50:36.426Z Has data issue: false hasContentIssue false

Laser induced hierarchical nano-composites in metallic multi-films: structural characterization

Published online by Cambridge University Press:  01 February 2011

C. Daniel*
Affiliation:
Functional Materials, Department for Materials Science, Saarland University, Saarbruecken, GERMANY
F. Mücklich
Affiliation:
Functional Materials, Department for Materials Science, Saarland University, Saarbruecken, GERMANY
*
1 Phone: +49 681 302 3048, Fax: +49 681 302 4876, Email: [email protected]
Get access

Abstract

Biological solutions to enhance strength and stability often use lateral and hierarchical composite structures from nano- to micro-scale. The effect does not consist of a large chemical variety but it is realized by structural composites (namely phase changes and orientations). A new developed bio-mimetic laser interference metallurgical technique uses this biological approach to optimize mechanical properties of surfaces and thin films. A hierarchical nano-composite is realized by both a vertical nm-scaled period of PVD-processed multi-films and a lateral μm-scaled period of laser interference metallurgy.

In past, laser interference irradiated Ni/Al multi-films showed periodical properties in the range of interference period. The hardness and modulus could be varied periodically and the texture and stress situation could be significantly changed.

In this work, the micro-structural evolution of irradiated Ni/Al multi-films is analyzed by TEM measurements to justify the properties change. The grain size can be obtained to be laterally oscillating between 5 to 10 nm and up to 100 nm and the layer interface to be semicoherent. Up to a certain depth, intermetallic compounds are found in the layer interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weiner, S., Traub, W., Wagner, H.D., J. Struct. Biolog. 126, 241 (1999).Google Scholar
[2] Jäger, I., Fratzl, P., Biophys. J. 79, 1737 (2000).Google Scholar
[3] Daniel, C., Mücklich, F., Liu, Z., Appl. Surf. Sci. 208–209, 317 (2003).Google Scholar
[4] Kelly, M.K., Dahlheimer, B., Phys. Stat. Sol. A 156, K13 (1996).Google Scholar
[5] von Allmen, M., Blatter, A., Laser- Beam Interactions with Materials, 2nd ed. (Springer, Berlin, Germany, 1995).Google Scholar
[6] Bäuerle, D., Laser Processing and Chemistry, 2nd ed. (Springer, Berlin, Germany, 1996).Google Scholar
[7] Kelly, M.K., Rogg, J., Nebel, C.E., Stutzmann, M., Kátai, Sz., Phys. Status Solidi A 166, 651 (1998).Google Scholar
[8] Rothhaar, U., Oechsner, H., Scheib, M., Müller, R., Phys. Rev. B 61, 974 (2000).Google Scholar
[9] Daniel, C., Lasagni, A., Mücklich, F., Surf. Coat. Technol. 180–181, 477 (2004).Google Scholar
[10] Daniel, C., Lasagni, A., Mücklich, F., Mat. Res. Soc. Symp. Vol. 795, U10.4 (2004).Google Scholar
[11] Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., Christiansen, S., Albrecht, M., Strunk, H.P., Phys. Stat. Sol. A 166, 659 (1998).Google Scholar
[12] Liu, K.W., Mücklich, F., Mat. Res. Soc. Symp. Vol. 753, BB6.5 (2003).Google Scholar
[13] Tamirisakandala, S., Yellapregada, P.V.R.K., Medeiros, S.C., Frazier, W.G., Malas, J. C., Dutta, B., Adv. Eng. Mater. 5, 667 (2003).Google Scholar
[14] Kraft, O., Volkert, C.A., Adv. Eng. Mater. 3, 99 (2001).Google Scholar
[15] Mendik, M., Sathish, S., Kulik, A., Gremaud, G., Wachter, P., J. Appl. Phys. 71, 2830 (1992).Google Scholar
[16] Liu, Z., Meng, X.K., Recktenwald, T., Mücklich, F., Mater. Sci. Eng. A 342, 101 (2003).Google Scholar
[17] International Center for Diffraction Data, PDF-No. Al [04–0787], Ni [04–0850], NiAl [44–1188], Ni3Al [09–0097], Ni3Al4 [46–1037] (Powder Diffraction File, 1998).Google Scholar