Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:50:56.980Z Has data issue: false hasContentIssue false

Laser Induced Decomposition of Triethylgallium and Trimethylgallium Adsorbed on GaAs(100)

Published online by Cambridge University Press:  25 February 2011

J. A. Mccaulley
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ, 07974
V. R. Mccrary
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ, 07974
V. M. Donnelly
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ, 07974
Get access

Abstract

We report X-ray photoelectron spectroscopy (XPS) studies of excimer laser stimulated decomposition of triethylgallium (TEGa) and trimethylgallium (TMGa) adsorbed on Gastabilized GaAs(100) surfaces in ultrahigh vacuum. TEGa and TMGa dissociatively chemisorb on GaAs at room temperature, whereupon irradiation by an excimer laser (at 193 or 351 nm) leads to further dissociation and desorption of carbon-containing species. The carbon removal rate (per laser pulse) decreases as carbon is removed suggesting multiple reaction sites, coverage dependent Arrhenius parameters, or second-order reactions. Based on the dependence of the rate on laser wavelength and fluence, we conclude that at low fluence, a two-photon electronic excitation of the adsorbate occurs, while at high fluence, laser induced pyrolysis dominates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donnelly, V. M., Tu, C. W., Beggy, J. C., McCrary, V. R., Lamont, M. G., Harris, T. D., Baiocchi, F. A., and Farrow, R. C., Appl. Phys. Lett, in press, 1988.Google Scholar
2. McCaulley, J. A., McCrary, V. R., and Donnelly, V. M., J. Phys. Chem., in press, 1988.Google Scholar
3. Philipp, H. R. and Ehrenreich, H., Phys. Rev. Lett., 8, 92 (1962); Phys. Rev., 129, 1550 (1963); H. Ehrenreich, H. R. Phillips, Phys Rev. Lett., 8, 59 (1962).CrossRefGoogle Scholar
4. Baeri, P. and Campisano, S. V., in Laser Annealing of Semiconductors, ed. Poate, J. M. and Mayer, J. M. (Academic Press, New York, 1982), pp 75109.Google Scholar
5. Putz, N., Heinecke, H., Heyen, M., Balk, P., Weyers, M., and Luth, H., J. Crystal Growth, 74, 292 (1986).Google Scholar
6. Tsang, W. T., Appl. Phys. Lett., 45, 1234 (1984).Google Scholar
7. Balk, P., Fischer, M., Grundmann, D., Luckrath, R., Luth, M., and Richter, W., J. Vac. Sci. Technol., B5, 1453 (1987).Google Scholar
8. Squire, D. W., Dulcey, C. S., and Lin, M. C., in Laser and Particle-beam Chemical Processing for Microelectronics, edited by Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M. (Mater. Res. Soc. Proc. 101, Pittsburgh, PA 1988) pp. 301306.Google Scholar
9. Jacko, M. G. and Price, S. J. W., Can. J. Chem., 41, 1560 (1963).Google Scholar
10. Paputa, M. C. and Price, S. J. W., Can. J. Chem., 57, 3178 (1979).Google Scholar
11. Hall, R. B., DeSantolo, A. M., and Bares, S. J., Surf. Sci., 161, L533 (1985).Google Scholar
12. Donnelly, V. M., McCaulley, J. A., McCrary, V. R., Tu, C. W., and Beggy, J. C., in Laser and Particle-beam Chemical Processing for Microelectronics, this volume, 1989.Google Scholar