Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T06:55:59.004Z Has data issue: false hasContentIssue false

Laser Guided Direct Writing

Published online by Cambridge University Press:  10 February 2011

Michael J. Renn*
Affiliation:
Optomec, Inc., 3911 Singer NE, Albuquerque, NM 87107, [email protected] and Department of Physics, Michigan Technological University, Houghton, MI 49931
Get access

Abstract

Laser-induced optical forces are used to guide and deposit 100 nm - 10 µm diameter particles onto solid surfaces in a process called laser-guided direct-writing. Nearly any particulate material, including both biological and electronic materials, can be manipulated and deposited with micrometer accuracy. Potential applications include three-dimensional cell patterning for tissue engineering, hybrid biological and electronic device construction, and biochip array fabrication

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ashkin, A.(1970) Physical Review Letters 24, 156159 Google Scholar
2 Ashkin, A. & Dziedzic, J. M. (1987) Science 235, 15171520 Google Scholar
3 Ashkin, A., Dziedzic, J. M. & Yamane, T. (1987) Nature 330, 769771 Google Scholar
4 Ashkin, A., Schutze, K., Dziedzic, J. M., Eutenauer, U. & Schliwa, M. (1990) Nature 348, 346348 Google Scholar
5 Ashkin, A. & Dziedzic, J. M. (1971) Applied Physics Letters 19, 283285 Google Scholar
6 Berns, M. W., Wright, W. H. & Steubing, R. W. (1991) International Review of Cytology 129, 144 Google Scholar
7 Svoboda, K. & Block, S. M. (1994) Annual Review of Biophysics and Biomolecular Structure 23, 247285 Google Scholar
8 Berns, M. W. (1998) Scientific American April, 6267 Google Scholar
9 Simmons, R. M. & Finer, J. T. (1993) Current Biology 3,309311 Google Scholar
10 Kuo, S. C. & Sheetz, M. P. (1992) Trends in Cell Biology 2, 116118 Google Scholar
11 Odde, D. J. & Renn, M. J. (1998) Annals of Biomedical Engineering 26, S141 Google Scholar
12 Odde, D. J. & Renn, M. J. (1999) Biotechnology and Bioengineering submittedGoogle Scholar
13 Rena, M. J. & Pastel, R. (1998) Journal of Vacuum Science and Technology B16, 38593863 Google Scholar
14 Renn, M. J., Pastel, R. & Lewandowski, H. (1999) Physical Review Letters 82, 15741577 Google Scholar
15 Renn, M. J. et al. (1995) Physical Review Letters 75, 32533256 Google Scholar
16 Ashkin, A. (1992) Biophysical Journal 61, 569582 Google Scholar
17 Buican, T. N. et al. (1987) Applied Optics 26, 53115316 Google Scholar
18 Marcatili, E. A. J. & Schmeltzer, R. A. (1964) The Bell System Technical Journal July, 17831809 Google Scholar
19 Dunn, J. C. Y., Yarmush, M. L., Koebe, H. G. & Tompkins, R. G. (1989) FASEB Journal 3, 174177 Google Scholar
20 Iyer, V. R. et al. (1999) Science 283, 8387 Google Scholar
21 Hayes, D. J., Wallace, D. B., Boldman, M. T. & Marusak, R. M. (1993) Microcircuits and Electronic Packaging 16, 173180 Google Scholar
22 Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. (1993) Nature 365, 721727 Google Scholar