Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T17:24:08.587Z Has data issue: false hasContentIssue false

Laser Doping and Crystallization of Amorphous Silicon Thin Films

Published online by Cambridge University Press:  28 February 2011

J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
P. G. Carey
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. I. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
P. Mei
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
S. E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
P. M. Smith
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
Get access

Abstract

Fast-pulse laser crystallization of amorphous silicon thin films on non-crystalline substrates provides a low-temperature process for generating polycrystalline silicon. This process can be augmented by including laser doping to reduce the number of process steps in the fabrication of thin-film polysilicon devices. We have studied the simultaneous laser crystallization and laser doping process, starting with amorphous silicon on fused silica substrates and using the gas immersion technique for the doping. n-type and p-type doping employed PF5 and BF3 gases, respectively. Films were characterized both structurally and electrically. The grain size increases with increasing laser energy density as the film becomes fully melted and reaches a peak value, similar to laser crystallization without doping. The dopant concentration increases with the number of laser shots and, with 100 shots, achieves a high dose with a low sheet resistance below 1000 ohms/square, appropriate for devices. The dopant profile extends to a depth comparable to the melt depth, beyond which it falls off to the background level. Therefore, the doping depth and concentration can be controlled with the laser parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Samashima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71, 435 (1986).Google Scholar
2 Ready, S. E., Boyce, J. B., Bachrach, R. Z., Johnson, R. I., Winer, K., Anderson, G. B., and Tsai, C. C., Mat. Res. Soc. Proc. 149, 345 (1989).Google Scholar
3 Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., and Hotta, K., IEEE Trans. Electron Devices 36, 2868 (1989).Google Scholar
4 Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., J. Electron. Mat. 19, 241 (1990).Google Scholar
5 Shimizu, K., Sugiura, O., and Matsumura, M., Jpn. J. Appl. Phys., 29, L1775 (1990).Google Scholar
6 Johnson, R. I., Anderson, G. B., Boyce, J. B., Fork, D. K., Mei, P., Ready, S. E., and Chen, S., Mat. Res. Soc. Proc. 297, 533 (1993).Google Scholar
7 Boyce, J. B., Anderson, G. B., Fork, D. K., Johnson, R. I., Mei, P., Ready, S. E., Mat. Res. Soc. Proc. 321, 671 (1994).Google Scholar
8 Anderson, G. B., Boyce, J. B., Fork, D. K., Johnson, R. I., Mei, P., and Ready, S. E., Mat. Res. Soc. Proc., 343, 709 (1994).Google Scholar
9 Brotherton, S. D., McCulloch, D. J., Clegg, J. B., and Growers, J. P., IEEE Trans. Electron Devices 40, 407 (1993).Google Scholar
10 Mei, P., Boyce, J. B., Hack, M., Lujan, R. A., Johnson, R. I., Anderson, G. B., Ready, S. E., Fork, D. K., and Smith, D. L., Mat. Res. Soc. Proc. 297, 151 (1993).Google Scholar
11 Mei, P., Boyce, J. B., Hack, M., Lujan, R. A., Johnson, R. I., Anderson, G. B., Fork, D. K., and Ready, S. E., J. Appl. Phys. 76 (5), 3194 (1994).Google Scholar
12 Carey, P. G. and Sigmon, T. W., Appl. Surface Sci., 43 325 (1989).Google Scholar
13 Weiner, K. H., Carey, P. G., McCarthy, A. M., and Sigmon, T. W., Microelectronic Eng, 20 107 (1993).Google Scholar