Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T09:00:51.110Z Has data issue: false hasContentIssue false

Laser direct writing of nanocompounds

Published online by Cambridge University Press:  29 July 2011

Andreas Ostendorf
Affiliation:
Ruhr-University Bochum, Laser Applications Technology, Universitaetsstr. 150, D-44801 Bochum, Germany
M’Barek Chakif
Affiliation:
Ruhr-University Bochum, Laser Applications Technology, Universitaetsstr. 150, D-44801 Bochum, Germany
Qingchuan Guo
Affiliation:
Ruhr-University Bochum, Laser Applications Technology, Universitaetsstr. 150, D-44801 Bochum, Germany
Get access

Abstract

Laser direct polymerization has been proven as a powerful tool to generate microstructures. Often photosensitive polymer materials are used because they can be tuned by photoactive molecules to be susceptible to a specific wavelength of light to initiate the polymerization process. One of the main drawbacks of this technique is the lack of functional polymers, e.g. conductive, magnetic, mechanical, optical or bioactive materials. Nanocomposites (nanocompounds), i.e. polymers with inorganic nanomaterials incorporated in the matrix offer a huge variety of new functionalities. A new approach will be presented how functional nanocomposite polymers can be generated and used for laser direct writing techniques. This can open the door for completely new MEMS and MOEMS devices comprising active and passive subcomponents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nielsen, L. E., Landel, R. F., “Mechanical Properties of Polymer and Composites,”2nd ed.; Marcel Dekker: New York, NY, USA, (1994).Google Scholar
2. Glushanin, S., Topolov, V. Y., Krivoruchko, A. V., “Features of piezoelectric properties of 0-3 PbTiO3-type ceramic/polymer composites,”Materials Chemistry and Physics 97 (2–3), 357364, (2006).Google Scholar
3. Hine, P., Broome, V., Ward, I., “The incorporation of carbon nanofibres to enhance the properties of self reinforced, single polymer composites,”Polymer, 46 (24), 1093610944, (2005).Google Scholar
4. Cioffi, N., Torsi, L., Ditaranto, N.. Tantillo, G., Ghibelli, L., Sabbatini, T., Bleve-Zacheo, T., Alessio, M.D`, Zambonin, P. G., Traversa, E., “Copper nanoparticle/Polymer composites with antifungal and bacteriostatic properties,”Chemistry of Materials 17 (21), 52555262, (2005).Google Scholar
5. Pelaiz-Barranco, A., Marin-Franch, P., “Piezo-, pyro-, ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate,”Journal of Applied Physics 97 (3), 034104–034104–5, (2005).Google Scholar
6. Wang, Juan, Xia, Hong, Xu, Bin-Bin, Niu, Li-Gang, Wu, Dong, Chen, Qi-Dai, and Sun, Hong-Bo, “Remote manipulation of micronanomachines containing nanoparticles”, Opti. Letter. 34, 5 (2009).Google Scholar
7. Meyyappan, M., “Carbon nanotubes science and applications,”CRC Press: Boca Raton, FL, (2005).Google Scholar
8. Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,”Composites Science and Technology 63 (15), 22232253, (2003).Google Scholar
9. Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A., Jasiuk, I., “Experimental trends in polymer nanocomposites – a review,”Materials Science and Engineering A-Structural Material Properties Microstructure and Processing 393 (1–2), 111, (2005).Google Scholar
10. Gerard, J. F., “Fillers and filled polymers,” Wiley-VCH: Weinheim, (2001).Google Scholar
11. Sun, H. B. and Kawata, S., Adv. Polym. Sci. 170, 169 (2004).Google Scholar
12. Maruo, S., Nakamura, O., and Kawata, S., Opt. Lett. 22, 132 (1997).Google Scholar
13. Lide, D. R., “Handbook of Chemistry and Physics,”76 th edition, CRC Press, Boca Raton, Florida (1995).Google Scholar
14. Ashkin, A., Dziedzic, JM., Bjorkholm, JE., Chu, S., “Observation of a single-beam gradient force optical trap for dielectric particles,”Opt. Lett. 11: 288290 (1986).Google Scholar
15. Kawata, S., Sun, H: B., Tanaka, T., and Takada, K., “Finer features for functional microdevices,”Nature 412, 697698 (2001).Google Scholar
16. Juodkazis, S., Mizeikis, V., Seet, K. K., Mima, M., and Misawa, H., “Two-photon lithography of nanorods in SU-8 photoresist, ”Nanotechnology 16, 846849 (2005).Google Scholar
17. Kim, Y. J., Shin, T. S., Choi, H. D., Kwon, J. H., Chung, Y. C., Yoon, H. G., “Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites,”Carbon 43 (1), 2330, (2005).Google Scholar
18. Barrau, S., Demont, P., Peigney, A., Laurent, C., Lacabanne, C., “DC and AC conductivity of carbon nanotubes-polyepoxy,”Macromolecules 36(14), 51875194, (2003).Google Scholar