Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:35:15.006Z Has data issue: false hasContentIssue false

Laser Direct Writing of Hydrous Ruthenium Dioxide Micro-Pseudocapacitors

Published online by Cambridge University Press:  17 March 2011

Craig B. Arnold
Affiliation:
Materials Science and Technology Division, Code 6372
Ryan C. Wartena
Affiliation:
Chemistry Division, Code 6171 Naval Research Laboratory, Washington, DC 20375, USA.
Bhanu Pratap
Affiliation:
Materials Science and Technology Division, Code 6372
Karen E. Swider-Lyons
Affiliation:
Chemistry Division, Code 6171 Naval Research Laboratory, Washington, DC 20375, USA.
Alberto Piqué
Affiliation:
Materials Science and Technology Division, Code 6372
Get access

Abstract

We are using a laser engineering approach to develop and optimize hydrous ruthenium dioxide (RuOxHy or RuO2·0.5 H2O) pseudocapacitors. We employ a novel laser forward transfer process, Matrix Assisted Pulsed Laser Evaporation Direct Write (MAPLE-DW), in combination with UV laser machining, to fabricate mesoscale pseudocapacitors and microbatteries under ambient temperature and atmospheric conditions. Thin films with the desired high surface area morphology are obtained without compromising their electrochemical performance. The highest capacitance structures are achieved by depositing mixtures of sulfuric acid with the RuO2·0.5 H2O electrode material. Our pseudocapacitors exhibit linear discharge behavior and their properties scale proportionately when assembled in parallel and series configurations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sarangapani, S., Tilak, B.V., and Chen, C.P., J. Electrochem. Soc., 146, 3791 (1996)Google Scholar
2. Trasatti, S. and Kurzweil, P., Plat. Met. Rev. 38, 46 (1994)Google Scholar
3. Conway, B.E., Birss, V., and Wojtowicz, J., J. Power Sources, 66, 1 (1997)Google Scholar
4. Zheng, J.P., Cygan, P.J., and Jow, T.R., J. Electrochem. Soc., 142, 2699 (1995)Google Scholar
5. McKeown, D.A., Hagans, P.L., Carette, L.P.L., Russell, A.E., Swider, K.E., Rolison, D.R., J. Phys. Chem. B., 103 4825 (1999)Google Scholar
6. Swider-Lyons, K.E., Bussmann, K.M., Griscom, D.L., Love, C.T., Rolison, D.R., in Solid State Ionic Devices II-Ceramic Sensors, eds. Wachsman, E.D., Weppner, W., Traveda, E., Vanysek, P., Yamazoe, N., Liu, M.L. (Electrochem. Soc. 2000-32, 2000) pp 148156 Google Scholar
7. Yoon, Y.S., Cho, W.I., Lim, J.H., and Choi, D.J., J. Power Sources, 101, 126 (2001)Google Scholar
8. Lin, K.C., Anderson, M.A., J. Electrochem. Soc., 146, 124 (1996)Google Scholar
9. Auyeung, R.C.Y., Wu, H.D., Modi, R., Piqué, A., Fitz-Gerald, J.M., Young, H.D., Lakeou, S., Chung, R., and Chrisey, D.B., in Laser Precision Microfabrication, eds. Miyamoto, I., Sugioka, K., Sigmon, T.W. (SPIE 4088, 2000) pp. 393396 Google Scholar
10. Chrisey, D.B., Piqué, A., Fitz-Gerald, J.M., Auyeung, R.C.Y., McGill, R.A., Wu, H.D., and Duignam, M., Appl. Surf. Sci, 154–155, 593 (2000)Google Scholar
11. Pell, W.G. and Conway, B.E., J. Power Sources, 96, 57 (2001)Google Scholar
12. Swider-Lyons, K.E., Weir, D.W., Love, C.T., Modi, R., Sutto, T., Piqué, A., and Chrisey, D.B., in Power Sources for the New Millennium, eds. Jain, M., Ryan, M.A., Surampudi, S., Marsh, R.A., Najarjan, G. (Electrochem. Soc. 2000-22, 2000) pp. 272276 Google Scholar
13. Kotz, R. and Carlen, M., Electrochimica Acta, 45, 2483 (2000)Google Scholar