Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:18:24.011Z Has data issue: false hasContentIssue false

Laser direct writing of graphene patterns

Published online by Cambridge University Press:  23 June 2011

J.B. Park
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511
W. Xiong
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511
Z.Q. Xie
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511
M. Mitchell
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511
Y. Gao
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511
M. Qian
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511
Y.F. Lu
Affiliation:
Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511
Get access

Abstract

Rapid growth of single-layer graphene using laser-induced chemical vapor deposition (LCVD) with a visible CW laser (λ = 532 nm) irradiation at room temperature was investigated. In this study, an optically-pumped solid-state laser with a wavelength of 532 nm irradiates a thin nickel foil to induce a local temperature rise, thereby allowing the direct writing of graphene patterns about ~10 μm in width with high growth rate on precisely controlled positions. It is demonstrated that the fabrication of graphene patterns can be achieved with a single scan for each graphene pattern using LCVD with no annealing or preprocessing of the substrate. The scan speed reaches to about ~50 um/s, which indicates that the graphene pattern with 1:1 aspect ratio (x:y) can be grown in 0.2 sec. The patterned graphene on nickel was transferred to SiO2/Si substrate for fabrication of electrical circuits and sensor devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Geim, A. K. and Novoselov, K. S., Nature mater. 6, 137 (2007).Google Scholar
2. Lee, C., Wei, X., Kysar, J. W., and Hone, J., Science 321, 385 (2008).Google Scholar
3. Bunch, S., Verbridge, S. S., Alden, J. S., Zande, A. M., Parpia, J. M., Craighead, H. G. and McEuen, P. L., Nano Lett. 8, 2458 (2008).Google Scholar
4. Prasher, R., Science 328, 185 (2010).Google Scholar
5. Bonaccorso, F., Sun, Z., Hasan, T. and Ferrari, A. C., Nature Photon. 4, 611 (2010).Google Scholar
6. Wassei, J. K. and Kaner, R. B., Mater. Today 13, 52 (2010).Google Scholar
7. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V. and Geim, A. K. Proc. Natl. Acad. Sci. 102, 10451 (2005).Google Scholar
8. Blake, P., Brimicombe, P. D., Nair, R. R., Booth, T. J., Jiang, D., Schedin, F., Ponomarenko, L. A., Morozov, S. V., Gleeson, H. F., Hill, E. W., Geim, A. K., and Novoselov, K. S., Nano Lett. 8, 1704 (2008).Google Scholar
9. Sutter, P., Nature mater. 8, 171 (2009).Google Scholar
10. Aristov, V. Yu., Urbanik, G., Kummer, K., Vyalikh, D. V., Molodtsova, O. V., Preobrajenski, A. B., Zakharov, A. A., Hess, C., Hänke, T., Büchner, B., Vobornik, I., Fujii, J., Panaccione, G., Ossipyan, Y. A., and Knupfer, M., Nano Lett. 10, 922 (2010).Google Scholar
11. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L. and Ruoff, R. R., Science 324, 1312 (2009).Google Scholar
12. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y. and Hong, B. H., Nature 457, 706 (2009).Google Scholar
13. Lee, Y., Bae, S., Jang, H., Jang, S., Zhu, S.-E., Sim, S. H., Song, Y. I., Hong, B. H. and Ahn, J.-H., Nano Lett. 10, 490 (2010).Google Scholar
14. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y.-J., Kim, K. S., Özyilmaz, B., Ahn, J.-H., Hong, B. H. and Iijima, S., Nature nanotech. 5, 574 (2010).Google Scholar
15. Park, J. B., Jong, S. H, Jeong, M. S., Lim, S. C. and Lee, Y. H., Nanotechnology 20, 185604 (2009).Google Scholar
16. Li, X., Zhu, Y., Cai, W., Borsiak, M., Han, B., Chen, D., Piner, R. D., Colombo, L., and Ruoff, R. S., Nano Lett. 9, 4359 (2009).Google Scholar
17. Al-Nimr, M. A., Inter. J Thermophys. 18, 1257 (1997).Google Scholar
18. Blakea, P., Hill, E. W., Castro Neto, A. H., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., and Geim, A. K., Appl. Phys. Lett. 91, 063124 (2007).Google Scholar