No CrossRef data available.
Published online by Cambridge University Press: 23 June 2011
Rapid growth of single-layer graphene using laser-induced chemical vapor deposition (LCVD) with a visible CW laser (λ = 532 nm) irradiation at room temperature was investigated. In this study, an optically-pumped solid-state laser with a wavelength of 532 nm irradiates a thin nickel foil to induce a local temperature rise, thereby allowing the direct writing of graphene patterns about ~10 μm in width with high growth rate on precisely controlled positions. It is demonstrated that the fabrication of graphene patterns can be achieved with a single scan for each graphene pattern using LCVD with no annealing or preprocessing of the substrate. The scan speed reaches to about ~50 um/s, which indicates that the graphene pattern with 1:1 aspect ratio (x:y) can be grown in 0.2 sec. The patterned graphene on nickel was transferred to SiO2/Si substrate for fabrication of electrical circuits and sensor devices.