Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:59:34.323Z Has data issue: false hasContentIssue false

Laser Diode Facet Degradation Study

Published online by Cambridge University Press:  01 February 2011

Ulrich T. Schwarz
Affiliation:
Angewandte und Experimentelle Physik, Universität Regensburg, 93040 Regensburg, Germany
Thomas Schoedl
Affiliation:
Angewandte und Experimentelle Physik, Universität Regensburg, 93040 Regensburg, Germany
V. Kümmler
Affiliation:
OSRAM Opto Semiconductors GmbH, Wernerwerkstr. 2, 93049 Regensburg, Germany
A. Lell
Affiliation:
OSRAM Opto Semiconductors GmbH, Wernerwerkstr. 2, 93049 Regensburg, Germany
V. Härle
Affiliation:
OSRAM Opto Semiconductors GmbH, Wernerwerkstr. 2, 93049 Regensburg, Germany
Get access

Abstract

We study the degradation behaviour of GaN gain guided laser diodes (LDs) on SiC substrates with cleaved facets and reflective coatings on none, one, or both facets. This allows us to demonstrate that in addition to volume effects there is a contribution of the laser facets to laser degradation. We observe that for the uncoated LDs the threshold current density is increasing considerably faster compared to LDs with mirror coatings. Degradation is observed during operation but not during storage at ambient conditions and thus expected to be photon or current induced. Operation of the uncoated laser in a nitrogen atmosphere reduces the degradation rate with respect to operation in air.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okayasu, M., Fukuda, M., Takeshita, T., Uehara, S., amd Kurumada, K., J. Appl. Phys. 69, 8346 (1991).Google Scholar
2. Fukuda, M., Reliability and Degradation of Semiconductor Lasers and LEDs (Artech House, Norwood, 1991).Google Scholar
3. Kuemmler, V., Bruederl, G., Bader, S., Miller, S., Weimar, A., Lell, A., Haerle, V., Schwarz, U. T., Gmeinwieser, N., and Wegscheider, W., phys. stat sol. (a) 194, 419 (2002).Google Scholar
4. Ladany, I., Ettenberg, M., Lockwood, H. F., and Kressel, H., Appl. Phys. Lett. 30, 87 (1977).Google Scholar
5. Schalwig, J., Mueller, G., Karrer, I., Eickhoff, M., Ambacher, O., Stutzmann, M., Goergens, L., and Dollinger, G., Appl. Phys. Lett. 80, 1222 (2002).Google Scholar
6. Steinho, G., Hermann, M., Scha, W. J., Eastman, L. F., Stutzmann, M., and Eickhoff, M., Appl. Phys. Lett. 83, 177 (2003).Google Scholar
7. Henry, C. H., Petroff, P. M., Logan, R. A., and Merrit, F. R., J. Appl. Phys. 50, 3721 (1979).Google Scholar