Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:33:34.520Z Has data issue: false hasContentIssue false

Laser Dehydrogenation of PECVD Amorphous Silicon

Published online by Cambridge University Press:  01 January 1993

Ping Mei
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
J.B. Boyce
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
M. Hack
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
R.A. Lujan
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
R.I. Johnson
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
G.B. Anderson
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
D.K. Fork
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
S.E. Ready
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
D.L. Smith
Affiliation:
XEROX PALO ALTO RESEARCH CENTER,3333 Coyote Hill Road,, Palo Alto, CA 94304
Get access

Abstract

A low temperature process for laser dehydrogenation and crystallization of hydrogenated amorphous silicon has been studied. The key feature of this process is the removal of hydrogen from the amorphous silicon thin films while crystallizing the films at the same time. Studies of transient phenomena, hydrogen loss, and crystallinity, using transient reflectivity analyses, transmission electron microscopy and quadrupole mass spectrometry, find that hydrogen out-diffusion depends strongly on film structure and the melt duration controlled by the laser energy density. Utilizing this process, for which the maximum temperature is 350 °C, both high quality polycrystalline and amorphous silicon TFT's have been fabricated on the same Corning 7059 glass substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fritzsche, H., Tanielian, M., Tsai, C. C., and Gaczi, P. J., J. Appl. Phys. 50, 3366, (1979).Google Scholar
2. Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., and Hotta, K., IEEE Trans. Electron Devices, 36, 2868, (1989).Google Scholar
3. Yuki, M., Masumo, K., Takafuji, S., Asakawa, T., Imajyo, N. and Kunigita, M., Proc. 1988 Int'l Display Research Conference, San Diego, (1988) (IEEE Publication, New York, 1988) p 220.Google Scholar
4. Shimizu, K., Sugiura, O., and Matsumura, M., Japn. J. Appl. Phys., 29, L1775, (1990).Google Scholar
5. Zhang, H., Kusumoto, N., Inushima, T., and Yamazaki, S.. IEEE electron Dev. Lett., 13, 297, (1992).Google Scholar
6. Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., J. Elec. Mat., 19, 241, (1990).Google Scholar
7. Johnson, R. I., Anderson, G. B., Ready, S. E., and Boyce, J. B., Mat. Res. Soc. Symp. Proc., 219, 407 (1991).Google Scholar
8. Ready, S. E., Roh, J. H., Boyce, J. B., and Anderson, G. B., Mat. Res. Soc. Symp. Proc., 258, 111 (1992).Google Scholar
9. Mei, P., Boyce, J. B., Hack, M., Lujan, R. A., and Johnson, R. I., Unpublished.Google Scholar
10. Johnson, R. I., Anderson, G. B., Ready, S. E., and Boyce, J. B., Presentation in Mat. Res. Soc. Spring 1991 Meeting, Anaham, CA.Google Scholar