Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T17:23:04.742Z Has data issue: false hasContentIssue false

Laser Cleaning - A New Surface Cleaning Method Without Pollutions

Published online by Cambridge University Press:  15 February 2011

Y. F. Lu
Affiliation:
Department of Electrical Engineering, National University of Singapore, Singapore 0511
Y. Aoyagi
Affiliation:
Semiconductor Laboratory, RIKEN, the Institute for Physical and Chemical Research, Wako-shi, Saitama 351-01 Japan
Get access

Abstract

Surface contaminations are removed by laser irradiation with pulse output and short wavelength from various substrate such as magnetic head slide, glass and metals. Laser cleaning is a new dry process to remove surface organic contaminations without using ultrasonic cleaning in organic solvents. This provides a new dry process to clean different substrate surfaces and can take the place of conventional wet cleaning processes such as ultrasonic cleaning with CFC and other organic solvents. The mechanisms of laser cleaning may include laser photodecomposition, laser ablation and surface vibration due to the impact of laser pulse. It is found that short wavelength and short pulse duration are necessary for effective cleaning. It is also found that an appropriate energy density is critical to achieve effective cleaning without causing surface oxidation and secondary contamination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hirota, Y., Sugii, K. and Homma, Y.: J. Electrochem. Soc. 138, 799(1991).Google Scholar
2. Aoyama, T., Yamazaki, T. and Ito, T.: Appl. Phys. Lett. 61, 102(1992).Google Scholar
3. Kniffin, M.L., Beerling, T.E. and Helms, C.R.: J. Electrochem. Soc. 139, 1195(1992).Google Scholar
4. Cherin, V.N., Tomaxovskaya, V.I., Krivtsova, O.B. and Goidina, V.K.: Colloid J. Russian Academy of Sci. 54, 789(1992).Google Scholar
5. Layden, L. and Wadlow, D.: J. Vac. Sci. & Technol. A 8, 3881(1990).Google Scholar
6. Sherman, R., Grob, J. and Whitlock, W.: J. Vac. Sci. & Technol. B–9, 1970(1991).Google Scholar
7. Shibata, T., Nanishi, Y. and Kondo, N.: J. Electrochem. Soc. 136, 3459(1989).Google Scholar
8. Kondo, N. and Nanishi, Y.: Jpn. J. Appl. Phys. 28, L7(1989).Google Scholar
9. Baunack, S. and Zehe, A.: Physica Status Solidi A 115, 223(1989).Google Scholar
10. Szuber, J.: Acta Phys. Pol. A 75, 423(1989).Google Scholar
11. Hirayama, H. and Tatsumi, T.: J. Appl. Phys. 66, 629(1989).Google Scholar
12. Yamada, H.: J. Appl. Phys. 65, 775(1989).Google Scholar
13. Takakuwa, Y., Nogawa, M., Niwano, M., Katakura, H., Matsuyoshi, S., Ishida, H., Kato, H. and Miyamoto, N.: Jpn. J. Appl. Phys. 28, L1274(1989).Google Scholar
14. Dobronravov, A.I., Cherkasskii, R.I., Butunova, Z.E., Zhuvasin, P.P. and Zyleva, G.G.: Steel in the USSR 18, 267(1988).Google Scholar
15. Cooper, D.W., Wolfe, H.L., Yeh, J.T.C. and Miller, R.J., Aerosol Sci. & Technol. 13, 116(1990).Google Scholar
16. Kaufherr, N., Krauss, A., Gruen, D.M. and Nielsen, R.: J. Vac. Sci. & Technol. A 8, 2849(1990).Google Scholar
17. Tam, A.C., Leung, W.P., Zapka, W. and Ziemlich, W.: J. Appl. Phys. 71, 3515(1992).Google Scholar
18. Kolomensky, A.A. and Maznev, A.A.: Izvestiya Akademii Nauk Seriya Fizicheskaya 57, 180(199 [in Russian].Google Scholar
19. Lu, Y.F., and Aoyagi, Y., Jpn. J. Appl. Physics, in press(1994)Google Scholar