Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:19:29.690Z Has data issue: false hasContentIssue false

Laser Assisted Atomic Layer Epitaxy-A Vehicle to Optoelectronic Integration

Published online by Cambridge University Press:  16 February 2011

Q. Chen
Affiliation:
Departments of Materials Sciences and Electrical Engineering and Center for Photonic Technology, University of Southern California, Los Angeles, CA 90089.
J. S. Osinski
Affiliation:
Departments of Materials Sciences and Electrical Engineering and Center for Photonic Technology, University of Southern California, Los Angeles, CA 90089.
C. A. Beyler
Affiliation:
Departments of Materials Sciences and Electrical Engineering and Center for Photonic Technology, University of Southern California, Los Angeles, CA 90089.
M. Cao
Affiliation:
Laser Institute, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P.R.China.
P. D. Dapkus
Affiliation:
Departments of Materials Sciences and Electrical Engineering and Center for Photonic Technology, University of Southern California, Los Angeles, CA 90089.
J. J. Alwan
Affiliation:
Department of Electrical Engineering, University of Illinois, 1406 W. Green Street, Urbana, IL 61801.
J. J. Coleman
Affiliation:
Department of Electrical Engineering, University of Illinois, 1406 W. Green Street, Urbana, IL 61801.
Get access

Abstract

Two implementations of laser assisted atomic layer epitaxy(LALE) for selective area growth of GaAs using trimethylgallium and AsH3 as precursors are described. A wide range of growth parameters lead to self-limiting monolayer/cycle growth which is suited for precise layer thickness control. By combining LALE with conventional metalorganic chemical vapor deposition, A10.3Ga0.7As/GaAs double heterostructures including LALE GaAs have been grown, permitting electrical and optical characterization to be performed on the thin and small areas of the LALE deposits. The information is used in a growth parameter optimization process resulting in device quality GaAs. Quantum well lasers with active region grown by LALE are demonstrated for the first time. The application of LALE to optoelectronic integration is demonstrated by depositing small area quantum wells as the gain medium in an otherwise transparent waveguide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Aiki, K., Nakamura, M., Umeda, J., IEEE J. QE–13, 597 (1977).Google Scholar
2. Doi, A., Aoyagi, Y., Namba, S., Appl. Phys. Lett. 49. 785 (1986).Google Scholar
3. Iwai, S., Meguro, T., Doi, A., Aoyagi, Y., and Namba, S., Thin Solid Films 163, 405 (1988).Google Scholar
4. Karam, N., Liu, R., Yoshida, I., and Bedair, S.M., Appl. Phys. Lett. 52, 1144 (1988).Google Scholar
5. DenBaars, S.P., Dapkus, P.D., Osinski, J.S., Zandian, M., Beyler, C.A., and Dzuko, K.M., in Proceedings of the 15th International Symposium on GaAs and Related Compounds, Atlanta, GA, 1988, Inst. Phys. Conf. Ser. 96, edited by Harris, J.S. ( Inst. Phys., London, Bristol, 1989), chap.3, pp89.Google Scholar
6. DenBaars, S.P. and Dapkus, P.D., J. Cryst. Growth 98, 195 (1989).Google Scholar
7. DenBaars, S.P., Ph.D. thesis, University of Southern California, (1988).Google Scholar
8. Miyoshi, T., Iwai, S., Iimura, Y., Aoyagi, Y., and Namba, S., Jpn. J. Appl. Phys. 29(8), 1435 (1990).Google Scholar
9. Chen, Q., Osinski, J.S., and Dapkus, P.D., Appl. Phys. Lett., 57(14), 1437 (1990).Google Scholar
10. Nishizawa, J., Abe, H., and Kurabayashi, T., J. Electrochem. Soc. 132(5), 1197 (1985).Google Scholar
11. Bedair, S.M., Tischler, M.A., Katsuyama, T., and El-Masry, N.A., Appl. Phys. Lett. 47(1), 51 (1985).Google Scholar
12. Ozeki, M., Mochizuki, K., Ohtsuka, N., and Kodama, K., Appl. Phys. Lett. 53(16), 1509 (1988).Google Scholar
13. Kawakyu, Y., Ishikawa, H., Sasaki, M., and Mashita, M., Jpn. J. Appl. Phys. 28(8), L1439 (1989).Google Scholar
14. Jeong, W.G., Ph.D Thesis, Uninversity of Southern California, (1990).Google Scholar
15. Ohno, H., Ohtska, S., Ohuchi, A., Matsubara, T., and Hasegawa, H., J. Cryst. Growth 29,342 (1988).Google Scholar
16. Mochizuki, K., Ozeki, M., Kodama, K., and Ohtsuka, N., J. Cryst. Growth 93, 557 (1988).Google Scholar
17. Iwai, S., Meguro, T., Doi, A., Aoyagi, Y., and Namba, S., Thin Solid Films 163, 405 (1988).Google Scholar
18. Sasaki, M., Kawakyu, Y., and Mashita, M., Jpn. J. Appl. Phys. 28(1), L131 (1989).Google Scholar
19. Eytz-Froidevaux, Y., Salathe, R.P., and Gilgen, H.H., Mat. Res. Soc. Symp. Proc. 17, 29 (1983).Google Scholar
20. Doi, A., Aoyagi, Y., and Namba, S., Appl. Phys. Lett. 48(26), 1787 (1986).Google Scholar