Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:20:59.915Z Has data issue: false hasContentIssue false

Laser ablated pure non-crystalline Co thin films for inductors for ultra-high frequencies

Published online by Cambridge University Press:  21 March 2011

V. Madurga
Affiliation:
Departamento de Física. Universidad Pública de Navarra. Campus Arrosadía. E-31006 Pamplona., Spain
J. Vergara
Affiliation:
Departamento de Física. Universidad Pública de Navarra. Campus Arrosadía. E-31006 Pamplona., Spain
C. Favieres
Affiliation:
Departamento de Física. Universidad Pública de Navarra. Campus Arrosadía. E-31006 Pamplona., Spain
Get access

Abstract

Non-crystalline Co thin films have been prepared by pulsed laser ablation deposition. From the M-H hysteresis loops measurements, a soft magnetic behavior is observed. Néel type magnetic domain walls are observed in the as-deposited films. The spontaneous magnetization, Ms(T = 300 K), is ≍ 860 emu/cm3. After annealing at 500 oC, Ms(T = 300 K) is ≍ 1460 emu/cm3. The extrapolated to zero K resistance decreases almost two orders of magnitude from the as deposited samples to the crystallized heated at 500 °C ones. A trilayer Co/Cu/Co has shown a real part magnetic susceptibility of 120 at 100 MHz. In the 100 MHz to 1 GHz frequency range, a perpendicular bias magnetic field increased this value up to 270, remaining almost constant for all range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bennett, M. R. and Wright, J. G.. Phys. Letters. 38A, 419 (1972).Google Scholar
2. Lee, E. W.. Physica B & C. 86–88, 781 (1977).10.1016/0378-4363(77)90684-2Google Scholar
3. Tanaka, S. , Takayama. J. Phys: Condens. Matter. 4, 8203 (1992).Google Scholar
4. Magnan, H., Chandesris, D., Rossi, G., Jezequel, G., Hricovini, K., Lecante, J.. Phys. Rev. B. 40, 9989 (1992).10.1103/PhysRevB.40.9989Google Scholar
5. Kakehashi, Y.. Mater. Sci. Eng. A, 179–180, 62 (1994).Google Scholar
6. Liebs, M., Hummler, K., Fahnle, M.. Phys. Rev. B. 51, 8664 (1995).Google Scholar
7. Hiroshima, Y., Ishiguro, T., Urata, I., Ohta, H., Tohogi, M., Ichinose, Y.. J. Appl. Phys. 79, 3572 (1996).Google Scholar
8. Madurga, V., Vergara, J., Landazábal, I.P., Ortega, R.J., Favieres, C. in Advanced Hard And Soft Magnetic Materials, edited by Coey, M.et al. (Mat.Res. Soc.Proc. 577, Pittsburg, PA, 1999) pp. 599604.Google Scholar
9. Favieres, C. and Madurga, V.. J. Non.Crys. Solids, (2001) (in press)Google Scholar
10. Fessant, A., Gieraltowski, J., Loaec, J., Gall, H. Le, Rakii, A.. IEEE. Trans. Mag, 29, 82 (1993)Google Scholar
11. Korenivski, V., Dover, R. B. van, Mankiewich, P. M., Ma, Z. -X., Becker, A. J., Polakos, P. A., Fratello, V. J.. IEEE. Trans. Mag., 32, 4905 (1996).Google Scholar
12. Jin, S., Zhu, W., Dover, R. B. van, Tiefel, T. H., Korenivski, V.. Appl. Phys. Lett., 70, 3161 (1997).Google Scholar