Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T05:33:12.401Z Has data issue: false hasContentIssue false

Largest Band Gap of All Single Walled Carbon Nanotubes

Published online by Cambridge University Press:  15 February 2011

I. Cabria
Affiliation:
Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072, U.S.A.
J. W. Mintmire
Affiliation:
Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072, U.S.A.
C. T. White
Affiliation:
Naval Research Laboratory, Washington D.C. 20375, U.S.A.
Get access

Abstract

Single walled carbon nanotubes, SWNTs, are either semiconducting, metallic, or quasimetallic. Early theoretical work based on tight-binding models predicted that the band gap of semiconducting carbon nanotubes should increase with decreasing radius and this picture was later confirmed by experiment. However, local-density functional calculations indicate that these models are not accurate for narrow carbon nanotubes, where the effects of curvature can convert nanotubes expected to be semiconductors to metals. This raises the question, what is the largest semiconducting band gap possible in a SWNT? We present results from first-principles calculations for a range of carbon nanotubes with radii between 0.15 and 1 nm. These results indicate that the (4,3) carbon nanotube has the largest band gap of all SWNTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tans, S. J., Verschuern, A.R. M., and Deeker, C., Nature 393, 49 (1998)Google Scholar
2. Derycke, V., Martel, R., Appenzeller, J., and Avouris, P., Nano Lett. 1, 453 (2001)Google Scholar
3. Collins, P. G., Arnold, M. S., and Avouris, P., Science 292, 706 (2001)Google Scholar
4. Bachtold, A., Hadley, P., Nakanishi, T., and Deeker, C., Science 294, 1317 (2001)Google Scholar
5. Mintmire, J. W., Dunlap, B. I., and White, C. T., Phys. Rev. Lett. 68, 631 (1992)Google Scholar
6. Hamada, N., Sawada, S., and Oshiyamu, A., Phys. Rev. Lett. 68, 1579 (1992)Google Scholar
7. Saito, R., Fujita, M., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 46, 1804 (1992)Google Scholar
8. Mintmire, J. W., Robertson, D. H., and White, C. T., J. Phys. Chem. Solids 54, 1835 (1993)Google Scholar
9. White, C. T. et. al. in Buckminsterfullerenes, edited by Billups, W. E., and Ciufolini, M. (VHS Publishers, NY, 1993), p. 125.Google Scholar
10. White, C. T., Robertson, D. H., and Mintmire, J. W., Phys. Rev. B 47, 5485 (1993)Google Scholar
11. Wildöer, J. W. G. et al., Nature (London) 391, 59 (1998)Google Scholar
12. Odom, T. W., Huang, J. L., Kim, P., and Lieber, C. M., Nature (London) 391, 62 (1998)Google Scholar
13. Blase, X., Benedict, L. X., Shirley, E. L., and Louie, S. G., Phys. Rev. Lett. 72, 1878 (1994)Google Scholar
14. Ajayan, P. M. and Iijima, S., Nature (London) 358, 23 (1992)Google Scholar
15. Sun, L. F. et al., Nature (London) 403, 384 (2000)Google Scholar
16. Qin, L. et al., Nature (London) 408, 50 (2000)Google Scholar
17. Wang, N., Tang, Z. K., Li, G. D., and Chen, J. S., Nature (London) 408, 50 (2000)Google Scholar
18. Peng, L.-M. et al., Phys. Rev. Lett. 85, 3249 (2000)Google Scholar
19. Machón, M., Reich, S., Thomsen, C., Sánchez-Portal, D., and Ordejón, P., Phys. Rev. B 66, 155410 (2002)Google Scholar
20. Cabria, I., Mintmire, J. W., and White, C. T., Phys. Rev. B 67, 121406 (2003)Google Scholar
21. Mintmire, J. W. and White, C. T., Phys. Rev. Lett. 50, 101 (1983)Google Scholar
22. Mintmire, J. W., in Density Functional Methods in Chemistry, edited by Labanowski, J. K. (Springer-Verlag, Berlin, 1990), p. 125.Google Scholar
23. Robertson, D. H., Brenner, D. W., and Mintmire, J. W., Phys. Rev. B 45, 12592 (1992)Google Scholar