Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T14:46:17.527Z Has data issue: false hasContentIssue false

Large- Scale ab initio Simulations of Fe-doped SrTiO3 Perovskites

Published online by Cambridge University Press:  01 February 2011

R.A. Evarestov
Affiliation:
Department of Quantum Chemistry, St. Petersburg University, St. Peterhof 198904, Russia Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
R.I. Eglitis
Affiliation:
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
S. Piskunov
Affiliation:
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
E. A. Kotomin
Affiliation:
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany Institute for Solid State Physics, The University of Latvia, 8 Kengaraga str., LV-1063 Riga, Latvia
G. Borstel
Affiliation:
Fachbereich Physik, Universität Osnabrück, D-49069 Osnabrück, Germany
Get access

Abstract

Using the Unrestricted Hartree-Fock method and supercells containing up to 160 atoms, we calculated the energy level positions in the gap and atomic geometry for the Fe4+ impurity substituting for a host Ti atom in SrTiO3. In agreement with experiment, the high spin (S=2) state is much lower in energy than the zero-spin state. The energy level positions strongly depend on the asymmetric displacement mode of the six nearest O ions which is a combination of the Jahn-Teller and breathing modes. A considerable covalent bonding between the Fe ion and four nearest O ions takes place.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schirmer, O.F., Berlinger, W., Müller, K.A., Solid State Comm. 16, 1289 (1975).Google Scholar
2. Waser, R., Bieger, T., and Maier, J., Solid State Comm. 76, 1077 (1990).Google Scholar
3. Donnerberg, H.-J., Phys Rev B 50, 9053 (1994).Google Scholar
4. Postnikov, A.V., Poteryaev, A.I., and Borstel, G., Ferroelectrics 206, 69 (1998).Google Scholar
5. Selme, M.O., Pecheur, P., and Toussaint, G., J Phys C 17, 5185 (1984).Google Scholar
6. Michel-Calendini, F.M. and Müller, K.A., Solid State Comm. 40, 255 (1981).Google Scholar
7. Moretti, P. and Michel-Calendini, F.M., Phys Rev B 34, 8538 (1986).Google Scholar
8. Donnerberg, H.-J., Atomic Simulations of Electro- Optical and Magneto- Optical Materials (Springer Tracks in Modern Physics, 151, Berlin, 1999)Google Scholar
9. Deak, P., phys. stat. sol.(b) 217, 9 (2000).Google Scholar
10. Bredow, T., Evarestov, R.A., and Jug, K., phys.stat.sol.(b) 222, 495 (2000).Google Scholar
11. Dobrotvorskii, A.M. and Evarestov, R.A., phys.stat.sol.(b) 66, 83 (1974).Google Scholar
12. Evarestov, R.A. and Smirnov, V.P., J.Phys.C: Cond. Mat. 9, 3023 (1997).Google Scholar
13. Evarestov, R.A. and Smirnov, V.P., Site Symmetry in Crystals: Theory and Applications, (2nd ed., Springer Series in Solid State Sciences, vol.108, Springer-Verlag, Berlin, 1997).Google Scholar
14. Evarestov, R.A. and Smirnov, V.P., phys.stat.sol. B215, 949 (1999).Google Scholar
15. Evarestov, R. A., Piskunov, S., Kotomin, E.A., Borstel, G., Phys. Rev. B, 2002, submitted.Google Scholar
16. Pisani, C. (Ed.) Quantum-Mechanical Ab-initio Calculations of the Properties of Crystalline Materials (Lecture Notes in Chemistry,. 67, Springer, 1996, 327 p). V.R. Saunders, R. Dovesi, C. Roetti, M. Causá, N.M. Harrison, R. Orlando, and C.M. Zicovich-Wilson, Crystal 98 User's Manual, Universita di Torino, Torino, Italy.Google Scholar
17. Durand, P. and Barthelat, P., Theor.Chim.Acta 38, 283 (1975).Google Scholar
18. Hay, P. J., Wadt, W.R., J Chem Phys 82, 284 (1985).Google Scholar
19. Evarestov, R.A., Leko, A.V., and Veryazov, V.A., phys stat sol. (b) 210, R3 (1998). V.A. Veryazov, A.V. Leko, and R.A. Evarestov, Physics of Solid State 41, 1286 (1999).Google Scholar
20. Catti, M., Valerio, G., and Dovesi, R., Phys.Rev.B 51, 7441 (1995).Google Scholar
21. Chadi, D.J. and Cohen, M.L., Phys Rev B7, 692 (1973).Google Scholar
22. Causá, M. and Zupan, A., Chem Phys Lett 220, 145 (1994).Google Scholar
23. Perdew, J.P. and Wang, Y., Phys Rev B 45, 13244 (1992).Google Scholar
24. Hellwege, K.-H. and Hellwege, A.M. (eds.) Ferroelectrics and Related Substances (Landolt- Börnstein, New Series, group 3, vol. 3, Springer Verlag, Berlin, 1969)Google Scholar
25. Evarestov, R.A. and Veryazov, V.A., Theor Chim Acta 81, 95 (1991).Google Scholar