Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:09:27.585Z Has data issue: false hasContentIssue false

Large Nonlinear Kerr Angle in non-Centrosymmetric Fe/AlGaAs (001) Heterostructure

Published online by Cambridge University Press:  01 February 2011

Haibin Zhao
Affiliation:
[email protected], The College of William and Mary, Williamsburg, VA, 23187, United States
Diyar Talbayev
Affiliation:
[email protected], The College of William and Mary, Williamsburg, VA, 23187, United States
Gunter Luepke
Affiliation:
[email protected], The College of William and Mary, Williamsburg, VA, 23187, United States
Aubrey Hanbicki
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Connie Li
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Berend Jonker
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Get access

Abstract

A large nonlinear magneto-optical effect is observed in a non-centrosymmetric Fe/AlGaAs (001) heterostructure. This effect is a direct consequence of interference between second-harmonic optical waves of magnetic and crystallographic origin, generated at ferromagnetic Fe interface and bulk AlGaAs, respectively. The longitudinal nonlinear Kerr rotation is measured to be 1.6° along the [1-10] hard axis, about two orders of magnitude stronger than the linear equivalent. The rotational second-harmonic signal shows large magnetic contrast along all the in-plane directions, demonstrating a high sensitivity to the magnetization of an anisotropic interface in the longitudinal geometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Reif, J., Zink, J. C., Schneider, C.M., and Kirschner, J., Phys. Rev. Lett. 67 2878 (1991).Google Scholar
2 Crawford, T. M., Rogers, C. T., Silva, T. J., and Kim, Y. K., Appl. Phys. Lett. 68 1573 (1996).Google Scholar
3 Rasing, Th., Appl. Phys. B 68 477 (1999).Google Scholar
4 Pan, Ru-Pin, Wei, H. D., and Shen, Y. R., Phys. Rev. B 39 1229 (1989).Google Scholar
5 Koopmans, B., Koerkamp, M. G., and Rasing, Th., Phys. Rev. Lett 74 3692 (1995).Google Scholar
6 Sato, K., Kodama, A., Miyamoto, M., Petukhov, A. V., Takanashi, K., Mitani, S., Fujimori, H., Kirilyuk, A., and Rasing, Th., Phys. Rev. B 64 184427 (2001).Google Scholar
7 Straub, M., Vollmer, R., and , Kirschner, Phys. Rev. Lett. 77 743 (1996).Google Scholar
8 Doi, M., B.Roldan Cuenya, Keune, W., Schmitte, T., Nefedov, A., Zabel, H., Spoddig, D., Meckenstock, R., and Pelzl, J., J. Magn. Magn. Mater. 240 407 (2002).Google Scholar
9 Zhao, H. B., Talbayev, D., Lüpke, G., Hanbicki, A. T., Li, C. H., Erve, M. J. van't, Kioseoglou, G., and Jonker, B. T., Phys. Rev. Lett. 95, 137202 (2005)Google Scholar